Multivariate: Mixed models

Table of contents

1	Goals 1.1 Goals	1 1
2	Linear mixed model 2.1 Linear mixed model	2 2
3	LMM: Some more details	13
	3.1 Equations	13
	3.2 Predictors	15
	3.3 Centering	16
	3.4 Shape of change	20
	3.5 Other stuff	23
4	Summary	25
	4.1 Summary	25

1 Goals

1.1 Goals

1.1.1 Goals of this section

- Multiple measures of the same thing or related things as an outcome
 - Possibly over time
- Want the variables ${\bf separate:}$ Not PCA / FA
- In this section:
 - Last time: MANOVA and repeated measures ANOVA
 - Mixed models (this week)

1.1.2 Goals of this lecture

- Mixed models as an approach to repeated measures
 - Focus on *individual* change
 - Fewer problems with *missing data*
 - Continuous and unevenly spaced time
 - Flexible with *predictors* (continuous and categorical)
- Way more complex & interesting than we have time to talk about!
 - Take another class: Longitudinal, Multilevel, Categorical, SEM

2 Linear mixed model

2.1 Linear mixed model

2.1.1 Linear mixed model

- Also known as random coefficient models, multilevel models, nested models, hierarchical linear models, random effects models
- Developed in *different disciplines*
 - Random coefficient models from statistics and biostatistics
 - Multilevel models from education

2.1.2 Linear mixed model

- Model for non-independent observations
 - Cross-sectional
 - * Multiple schoolchildren with the same teacher
 - * Employees who work in teams or workgroups
 - Longitudinal

* Multiple observations from the same individual over time

• Observations from *same* class/team/person are **more similar to one another** than observations from *different* classes/teams/persons

2.1.3 How not to do it

https://xkcd.com/2533

2.1.4 Non-independence

- Non-independence means that there is some redundancy (or *correlation*) between observations
 - Effective sample size is smaller that the actual sample size
 - * Collect 100 observations but we only have (for example) 72 obs' worth of information, due to correlations between obs
- Smaller effective sample size means standard error is **underestimated** if you ignore non-independence
 - How much the standard errors are underestimated depends on how much the observations are related to one another

2.1.5 Linear mixed model: Motivation

- Linear mixed model (LMM): Extension of general linear model (GLM)
 - Partitions variation, just like ANOVA and regression
 - But more ways to partition and more control over the form

2.1.6 Linear mixed model: Motivation

• How are observations related to one another?

- Linear regression: They're not (Independence)

- Between-subjects ANOVA: They're not (Independence)
- Repeated-measures ANOVA: According to "compound symmetry"
- $-\,$ LMM has two ways to do this
 - * Random effects (this class)
 - * Correlated residuals (not this class)

2.1.7 Random effects

4

0

0

4

- Relationship between time and outcome
 - X axis = time
 - Y axis = outcome
- Random effects: Relationship can be different for each person
 - Differences in intercept = random intercepts
 - Differences in change over time = random slopes
 - Can have one or other or both

2.1.0 Data: Executive functioning dataset							
id	sex	tx	wave	dlpfc	ef	age	age12
1	1	0	1	-0.184	2.167	12.027	0.027
1	1	0	2	1.129	1.806	13.058	1.058
1	1	0	3	-0.840	1.444	14.074	2.074
1	1	0	4	0.472	2.889	15.112	3.112
2	1	0	1	0.801	0.722	12.089	0.089
2	1	0	2	1.129	1.444	13.124	1.124
2	1	0	3	0.801	1.806	13.997	1.997
2	1	0	4	1.457	2.528	15.021	3.021
3	1	1	1	0.472	3.250	11.953	-0.047
3	1	1	2	1.129	3.250	13.048	1.048
3	1	1	3	0.144	2.528	13.820	1.820
3	1	1	4	0.144	2.528	15.058	3.058
4	0	0	1	0.472	3.611	12.076	0.076
4	0	0	2	0.472	4.333	12.845	0.845
4	0	0	3	0.472	3.972	13.818	1.818

0.472

3.972

2.1.8 Data: Executive functioning dataset

14.931

2.931

2.1.9 Individual trajectories for first 4 people

2.1.10 All individual trajectories: Spaghetti plot

2.1.11 Assumptions

- Linear regression assumes independence of observations
 - Definitely not true here
 - What should we do?
- We can still use the regression lines for each person
 - Non-independence only a problem for estimating standard errors
 - Can use the estimates of individual intercepts and slopes

2.1.12 So I just report 100 intercepts and slopes?

- What do we do with all those regression lines?
 - Fixed effects: Average of intercepts and slopes
 - Random effects: Variance of intercepts and slopes

Important I

- You have control over the model: Everyone **can** have a different *slope* but they don't **have to**
 - Both random intercepts and slopes: People can have different change over time
 - Only random intercepts: Everyone has the same change over time

2.1.13 Mixed model: Output in R

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's method [lmerModLmerTest] Formula: dlpfc ~ 1 + age12 + tx + age12 * tx + (1 + age12 | id) Data: ef_uni AIC BIC logLik deviance df.resid 3502.5 3543.9 -1743.3 3486.5 1296 Scaled residuals: Min 1Q Median ЗQ Max -2.89823 -0.50229 -0.02245 0.51797 2.80891 Random effects:

Groups Variance Std.Dev. Corr Name id (Intercept) 0.67110 0.8192 age12 0.05248 0.2291 -0.37 Residual 0.48857 0.6990 Number of obs: 1304, groups: id, 342 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 0.58230 0.07792 341.09983 7.473 6.63e-13 *** age12 0.11158 0.03059 335.26580 3.648 0.000307 *** -0.06801 0.10933 342.28563 -0.622 0.534346 tx age12:tx 0.01185 0.04298 338.26053 0.276 0.782972 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) age12 tx -0.550 age12 tx -0.713 0.392 age12:tx 0.391 -0.712 -0.552

2.1.14 Mixed model: Output in SPSS

Mixed Model Analysis

Model Dimension ^a							
			Covariance	Number of			
		Number of Levels	Structure	Parameters	Subject Variables		
Fixed Effects	Intercept	1		1			
	age12	1		1			
	tx	1		1			
	age12 * tx	1		1			
Random Effects	Intercept + age12 ^b	2	Unstructured	3	id		
Residual				1			
Total		6		8			
a. Dependent Variable: dlpfc.							
b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield							
results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current							

syntax reference guide for more information.

<u>+</u>	,						
Information Criteria ^a							
-2 Log Likelihood	3486.503						
Akaike's Information Criterion (AIC)	3502.503						
Hurvich and Tsai's Criterion (AICC)	3502.615						
Bozdogan's Criterion (CAIC)	3551.889						
Schwarz's Bayesian Criterion	3543.889						
(BIC)							
The information criteria are displa	The information criteria are displayed in						
smaller-is-better form.	smaller-is-better form.						
a. Dependent Variable: dlpfc.	a. Dependent Variable: dlpfc.						

Fixed Effects

Type III Tests of Fixed Effects ^a							
Source	Numerator df	Denominator df	F	Sig.			
Intercept	1	341.102	55.853	.000			
age12	1	335.258	13.305	.000			
tx	1	342.288	.387	.534			
age12 * <u>tx</u>	1	338.253	.076	.783			
a Dependen	t Variable: dlnfc						

a. Dependent Variable: dlpfc.

Estimates of Fixed Effects ^a								
						95% Confidence Interval		
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound	
Intercept	.582297	.077915	341.102	7.473	.000	.429043	.735552	
age12	.111581	.030590	335.258	3.648	.000	.051408	.171754	
tx	068006	.109332	342.288	622	.534	283052	.147040	
age12 * <u>tx</u>	.011849	.042984	338.253	.276	.783	072700	.096399	
a Demandant	lariable, disfe							

a. Dependent Variable: dlpfc.

Covariance Parameters

Estimates of Covariance Parameters ^a							
						95% Confide	ence Interval
Parameter	Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		.488568	.027363	17.855	.000	.437777	.545253
Intercept + age12 [subject = id]	UN (1,1)	.671099	.080192	8.369	.000	.530975	.848201
	UN (2,1)	070179	.025878	-2.712	.007	120898	019460
	UN (2,2)	.052476	.012977	4.044	.000	.032320	.085204

a. Dependent Variable: dlpfc.

Random Effect Covariance Structure									
(G) ^a									
Intercept id age12 id									
Intercept id	.671099	070179							
age12 id070179 .0524									
Unstructured									
a. Dependent Variable: dlpfc.									

2.1.15 Fixed effects: Means or averages

term	estimate	std.error	statistic	df	p.value
(Intercept)	0.582	0.078	7.473	341.100	0.000
age12	0.112	0.031	3.648	335.266	0.000
tx	-0.068	0.109	-0.622	342.286	0.534
age12:tx	0.012	0.043	0.276	338.261	0.783

- R: t-tests with no df or p-values with just lme4 package
 - df and *p*-values with **lmerTest** package
- SPSS: t-tests

2.1.16 Fixed effects: Interpretation

- Y = 0.582 + 0.112(age12) + -0.068(tx) + 0.012(age12 * tx)
 - tx = 0 (in *blue*): Y = 0.582 + 0.112(age12)
 - * Intercept: Expected dlpfc when age12 = 0, for group tx = 0
 - * Slope: Change in dlpfc for 1 unit change in age12, for group tx = 0
 - tx = 1 (in red): Y = 0.514 + 0.123(age12)
 - * Intercept: Expected dlpfc when age12 = 0, for group tx = 1
 - * Slope: Change in dlpfc for 1 unit change in age12, for group tx = 1

2.1.17 Fixed effects: Figure

2.1.18 Random effects: Variances

term	estimate
var(Intercept)	0.671
cov(Intercept).age12	-0.070
varage12	0.052
varObservation	0.489

• R: No test statistics

• SPSS: z-tests (p-value/2 for variances)

2.1.19 Random effects: Interpretation

- Intercept variance: Variance of individual intercepts
- Slope variance: Variance of individual slopes
- **Correlation** between intercept and slope: Correlation between individual *intercepts and slopes*
 - How is a person's intercept related to their slope?
- Residual: Error
 - How well we do at predicting the individual trajectory

2.1.20 Prediction interval: Fixed + random

- Average effects with individual variation
 - What do typical **individual effects** look like?
 - Assume normally distributed variance: $estimate \pm 1.96 \times SD$

• Prediction intervals

- Interval for likely values of **individual** intercepts and slopes
- Not confidence intervals
 - Sampling distribution of test statistic
 - You get those for fixed effects

2.1.21 Prediction interval: Fixed + random

- Average intercept (for tx = 0) = 0.582
 - $-1.96 \times SD = 1.96 \times 0.819 = 1.606$
 - -95% of individual intercepts are in [-1.023, 2.188]
- Average **slope** (for tx = 0) = 0.112
 - $-1.96 \times SD = 1.96 \times 0.229 = 0.449$
 - -95% of individual slopes are in [-0.337, 0.561]

2.1.22 Means + individual variability

3 LMM: Some more details

3.1 Equations

3.1.1 Linear mixed model: Equations

- $Y = \underbrace{\mathbf{X}\beta}_{\text{fixed effects}} + \underbrace{\mathbf{Z}\gamma}_{\text{random effects}} + \underbrace{\boldsymbol{\epsilon}}_{\text{residual}}$
 - Fixed effects: Average effects of predictors

- Like regression coefficients

- Random effects: Individual variation around those averages
 - Variances and covariances
- **Residual**: Error in predicting individual trajectories
 - Also a variance (but usually not interpreted)

3.1.2 Linear mixed model: Equations

• Random *intercept* and *slope*

$$-Y_{ij} = \underbrace{\beta_{00} + \beta_{10}(age12_{ij}) + \beta_{01}(tx_i) + \beta_{11}(age12_{ij})(tx_i)}_{\text{fixed effects}} + \underbrace{r_{0i} + r_{1i}(age12_{ij})}_{\text{random effects}} + \underbrace{e_{ij}}_{\text{residual}} + \underbrace{e_{ij}}_{\text{re$$

- Random effects are normally distributed with mean 0 and variance-covariance matrix ${f G}$

$$\begin{split} & - \gamma \sim N(0, \mathbf{G}) \\ & - \mathbf{G} = \begin{bmatrix} \sigma_{r_{0i}}^2 & \\ \sigma_{r_{0i}r_{1i}} & \sigma_{r_{1i}}^2 \end{bmatrix} \end{split}$$

3.1.3 Linear mixed model: Equations

• Random *intercept* only

$$-Y_{ij} = \underbrace{\beta_{00} + \beta_{10}(age12_{ij}) + \beta_{01}(tx_i) + \beta_{11}(age12_{ij})(tx_i)}_{\text{fixed effects}} + \underbrace{\underline{r_{0i}}_{\text{random effects}}}_{\text{residual}} + \underbrace{\underline{e_{ij}}_{\text{residual}}}_{\text{residual}} +$$

- Random effects are normally distributed with mean 0 and variance-covariance matrix ${\bf G}$

-
$$\gamma \sim N(0, \mathbf{G})$$

- No random slopes, so $\mathbf{G} = [\sigma_{r_{0i}}^{2}]$

3.1.4 Example data: Equations

• Random *intercept* and *slope*

$$-Y_{ij} = \underbrace{0.582 + 0.112(age12_{ij}) - 0.068(tx) + 0.012(tx)(age12_{ij})}_{\text{fixed effects}} + \underbrace{r_{0i} + r_{1i}(age12_{ij})}_{\text{random effects}} + \underbrace{e_{ij}}_{\text{residual}} + \underbrace{e_{ij}}_{\text{residual}}$$

• Random effects are normally distributed with mean 0 and variance-covariance matrix **G**

$$- \mathbf{G} = \begin{bmatrix} \sigma_{r_{0i}}^2 & \sigma_{r_{0i}r_{1i}} \\ \sigma_{r_{0i}r_{1i}} & \sigma_{r_{1i}}^2 \end{bmatrix} = \begin{bmatrix} 0.671 & -0.07 \\ -0.07 & 0.052 \end{bmatrix}$$

- Can convert variances and covariances into SDs and correlations for interpretation
* e.g., $\sqrt{0.671} = 0.819$

3.2 Predictors

3.2.1 Adding predictors to the model

- The example model has two predictors
 - Treatment (tx): Categorical (dummy code)
 - * Time-invariant predictor: Same value at all times
 - Age (age12): Continuous
 - * Time-varying predictor: Different value at each time
- Two types of predictors are entered into model in different ways
 - Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of school psychology, 48(1), 85-112.

id sexwave dlpfc $\mathbf{e}\mathbf{f}$ age12 $\mathbf{t}\mathbf{x}$ age 1 1 0 1 -0.184 2.16712.027 0.0271 1 0 $\mathbf{2}$ 1.1291.80613.0581.0581 0 3 -0.840 1.44414.0742.0741 1 1 0 40.4722.88915.1123.112 $\overline{2}$ 1 0 1 0.801 0.72212.089 0.089 $\mathbf{2}$ $\overline{2}$ 1 0 1.1291.44413.1241.124 $\mathbf{2}$ 0 1 3 0.801 1.80613.997 1.997 $\mathbf{2}$ 0 2.5281 41.45715.0213.0213 1 1 0.4723.25011.953-0.0471 3 1 1 $\mathbf{2}$ 1.1293.2501.04813.048 3 1 1 3 0.1442.5281.82013.8203 1 2.5281 4 0.144 15.0583.0584 0 0 1 0.4723.61112.0760.076 0 4.3330.8454 0 20.47212.8454 0 0 3 0.4723.97213.8181.8184 0 0 4 0.4722.9313.97214.931

3.2.2 Data: Executive functioning dataset

3.2.3 LMM = Multilevel model

- LMM is also a **multilevel** model where
 - Level 1: Occasions
 - Level 2: Person

- Multiple occasions are nested within each person (L1 w/in L2)
- LMM can be re-written in terms of L1 and L2 $\,$
 - Time-varying predictors go in L1 (occasions) part
 - Time-invariant predictors go in L2 (person) part

3.2.4 Multilevel models: Adding predictors

• Level 1: Trajectories

 $-Y_{ij} = \pi_{0i} + \pi_{1i}(age12_{ij}) + e_{ij}$

• Level 2: People

$$-\pi_{0i} = \beta_{00} + \beta_{01}(tx_i) + r_{0i} -\pi_{1i} = \beta_{10} + \beta_{11}(tx_i) + r_{1i}$$

• Combined: Put them together

$$- Y_{ij} = \beta_{00} + \beta_{10}(age12_{ij}) + \beta_{01}(tx_i) + \beta_{11}(age12_{ij})(tx_i) + r_{0i} + r_{1i}(age12_{ij}) + e_{ij}$$

3.3 Centering

3.3.1 Why center predictors?

- 1. Interactions: Reduce collinearity
- 2. Interactions and more generally: Improve interpretability
 - Intercept: Predicted outcome when X = 0
 - What if X = 0 doesn't exist or is somewhere useless?
- 3. Mixed models: Unconflate time-specific (L1) and person-specific (L2) relationships

3.3.2 Why does this matter so much for mixed models?

- Level 1 (occasion) observations have two kinds of information
 - Occasion (L1)
 - Person (L2)
- If you ask me one day if I'm depressed, that gives you information about
 - How depressed I am that day (occasion, L1)
 - How depressed I generally am (person, L2)

3.3.3 Centering is more complicated

- Grand mean centering (GMC)
 - Center all observations at the grand mean of all observations
 - Doesn't change the relationships among variables
- Centering within cluster (CWC)
 - Center each person's observations at the mean of that person
 - *Does change* the relationships among variables

3.3.4 Figure: Uncentered

3.3.6 Figure: CWC

3.3.7 GMC vs CWC

- Centering changes the **context** for the different clusters (L2: People)
 - GMC maintains mean differences between people on L1 predictor
 - * What is a person like *compared to other people*?
 - CWC leliminates differences between people on L1 predictor
 - * What are people like *compared to their own mean*?
- Different contexts means different interpretations for both level 1 and level 2 predictors

3.3.8 Centering predictors: Some references

- Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors in multilevel models: Best practices and interpretation. *Psychological Methods*.
- Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating level-specific effects of control variables when primary interest lies in level-2 effects. British Journal of Mathematical and Statistical Psychology, 73, 194-211.
- Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. *Psychological methods*, 25(3), 365.
- Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel models across different combinations of model specification and estimation. Advances in methods and practices in psychological science, 2(3), 288-311.
- West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel modeling: Current and future applications in personality research. *Journal of personality*, 79(1), 2-50.
- Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. *Psychological methods*, 12(2), 121.

3.3.9 Centering time

- "Time" is a special predictor
 - Center time variable so that 0 is at a meaningful point
 - Intercept: Expected value of outcome when X = 0
 - * Age = 0?
 - * Baseline?
 - * Centered age at specific time

3.4 Shape of change

3.4.1 Is it linear?

http://www.xkcd/605

https://xkcd.com/2048/

3.4.3 Shape of change: L1 equation

• Linear change

$$-Y_{ij} = \pi_{0i} + \pi_{1i}(age12_{ij}) + e_{ij}$$

• Quadratic change

$$-Y_{ij} = \pi_{0i} + \pi_{1i}(age12_{ij}) + \pi_{2i}(age12_{ij})^2 + e_{ij}$$

• Logarithmic change

$$- \ Y_{ij} = \pi_{0i} + \pi_{1i}(ln(age12_{ij})) + e_{ij}$$

3.4.4 Non-linear change

- Many phases of development or change are non-linear
 - Increase followed by plateau / maintanence
 - Decrease to a set point
 - Sometimes reflect floor or ceiling effects
- Non-linear change in inherently more complex
 - Straight lines are easy

3.5 Other stuff

3.5.1 Intraclass correlation (ICC)

- Quantifies non-independence in repeated outcome
- Use "random effects ANOVA" or "unconditional mixed model"
 - Like "no predictors" model from logistic regression
- Ratio of L1 and L2 variability:

$$- ICC = \frac{\sigma_{r_{0i}}^2}{\sigma_{r_{0i}}^2 + \sigma_e^2}$$

- Proportion of variance due to differences between people

3.5.2 Variance explained and variance reduction

- When you compare your model to the unconditional model
 - Variance *explained*
 - How much variance does my model explain?
 - Like R^2
- When you compare your model to some other (simpler) model
 - Variance reduction
 - How much is (error) variance reduced by adding whatever you added?
 - Like R^2_{change}

3.5.3 Variance explained and variance reduction

- Model 1 is simpler, Model 2 is more complex
 - The model you "care about" is Model 2
- Reduction in variance =

 $\frac{\sigma_e^2(Model1) - \sigma_e^2(Model2)}{\sigma_e^2(Model1)}$

3.5.4 Missing data

- Missing on outcome: OK (assuming MAR)
 - Uses all observations for a person to create trajectories
- Missing on predictor: Case is dropped
 - Make sure no missing or use multiple imputation

3.5.5 Extensions of mixed models

- Change in multiple variables at once
 - Baldwin et al. (2014): Complicated but possible
- Nonnormal outcomes
 - More difficult in unexpected ways when outcomes are non-normal

- SEM framework (Latent growth models)
 - Growth as a predictor, simultaneous growth of multiple processes, and other more complex models

4 Summary

4.1 Summary

4.1.1 Summary of this week

- Mixed models as an approach to repeated measures
 - Focus on *individual* change
 - Fewer problems with *missing data*
 - Continuous and unevenly spaced *time*
 - Flexible with *predictors* (continuous and categorical)

• Way more complex & interesting than we have time to talk about!

- Adding predictors, shape of change, multiple outcomes
- Take Longitudinal or Multilevel models or Categorical or SEM

4.1.2 Summary: RM ANOVA vs mixed models

- RM ANOVA focuses on group level differences in means at each time point
 - Only uses *complete cases* on the outcome
 - Categorical predictors only
- LMM focuses on **individual trajectories** over time
 - Uses all observations available on the outcome
 - *Continuous* or categorical predictors
- In general, I would always use some version of a mixed model