Multivariate: Mixed models
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1 Goals

1.1 Goals
1.1.1 Goals of this section

e Multiple measures of the same thing or related things as an outcome
— Possibly over time

o Want the variables separate: Not PCA / FA
o In this section:

— Last time: MANOVA and repeated measures ANOVA
— Mixed models (this week)
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1.1.2 Goals of this lecture

¢ Mixed models as an approach to repeated measures

— Focus on individual change

— Fewer problems with missing data

— Continuous and unevenly spaced time

— Flexible with predictors (continuous and categorical)

¢ Way more complex & interesting than we have time to talk about!

— Take another class: Longitudinal, Multilevel, Categorical, SEM

2 Linear mixed model

2.1 Linear mixed model
2.1.1 Linear mixed model
e Also known as random coefficient models, multilevel models, nested models, hierarchi-

cal linear models, random effects models

e Developed in different disciplines

— Random coefficient models from statistics and biostatistics
— Multilevel models from education

2.1.2 Linear mixed model

e Model for non-independent observations

— Cross-sectional

x Multiple schoolchildren with the same teacher
* Employees who work in teams or workgroups

— Longitudinal
x Multiple observations from the same individual over time

o Observations from same class/team/person are more similar to one another than
observations from different classes/teams/persons



2.1.3 How not to do it
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2.1.4 Non-independence

o Non-independence means that there is some redundancy (or correlation) between
observations

— Effective sample size is smaller that the actual sample size

« Collect 100 observations but we only have (for example) 72 obs’ worth of infor-
mation, due to correlations between obs

e Smaller effective sample size means standard error is underestimated if you ignore
non-independence

— How much the standard errors are underestimated depends on how much the obser-
vations are related to one another

2.1.5 Linear mixed model: Motivation

o Linear mixed model (LMM): Extension of general linear model (GLM)

— Partitions variation, just like ANOVA and regression
— But more ways to partition and more control over the form

2.1.6 Linear mixed model: Motivation

¢ How are observations related to one another?

— Linear regression: They're not (Independence)


https://xkcd.com/2533

— Between-subjects ANOVA: They’re not (Independence)
— Repeated-measures ANOVA: According to “compound symmetry”
— LMM has two ways to do this

* Random effects (this class)
« Correlated residuals (not this class)

2.1.7 Random effects

¢ Relationship between time and outcome

— X axis = time
— Y axis = outcome

¢ Random effects: Relationship can be different for each person

— Differences in intercept = random intercepts
— Differences in change over time = random slopes
— Can have one or other or both

2.1.8 Data: Executive functioning dataset

id | sex | tx | wave | dlpfc ef age | agel2
1 11 0 1|-0.184 | 2.167 | 12.027 | 0.027
1 11 0 2| 1.129 | 1.806 | 13.058 | 1.058
1 110 3| -0.840 | 1.444 | 14.074 | 2.074
1 110 4| 0.472 | 2.889 | 15.112 | 3.112
2 110 1| 0.801 | 0.722 | 12.089 | 0.089
2 11 0 2| 1.129 | 1.444 | 13.124 | 1.124
2 110 3| 0.801 | 1.806 | 13.997 | 1.997
2 11 0 4 | 1.457 | 2.528 | 15.021 | 3.021
3 1 1 1| 0.472 | 3.250 | 11.953 | -0.047
3 1 1 2| 1.129 | 3.250 | 13.048 | 1.048
3 1 1 3| 0.144 | 2,528 | 13.820 | 1.820
3 1] 1 4| 0.144 | 2.528 | 15.058 | 3.058
4 0| 0 1| 0472 | 3.611 | 12.076 | 0.076
4 0| 0 2| 0472 | 4.333 | 12.845 | 0.845
4 0] 0 3| 0472|3972 | 13.818 | 1.818
4 0] 0 41 0472 | 3.972 | 14.931 | 2.931




2.1.9 Individual trajectories for first 4 people

2.1.10 All individual trajectories: Spaghetti plot

e o o ® ommoe
w® @oeoe wn oo ~ e o0 e

2 _ [ T e — ewmmoen = ®=e
-—;-;; — ®» oo \‘"‘i“_/“- e

o = P = —
Y= ) - —— Bes==c ¢
S 0 - =
© «

_ me@e@e  @e emmsens

= —\ALAS

_2- L) ... ...




2.1.11 Assumptions

o Linear regression assumes independence of observations

— Definitely not true here
— What should we do?

e We can still use the regression lines for each person

— Non-independence only a problem for estimating standard errors
— Can use the estimates of individual intercepts and slopes

2.1.12 So | just report 100 intercepts and slopes?

e What do we do with all those regression lines?

— Fixed effects: Average of intercepts and slopes
— Random effects: Variance of intercepts and slopes

1 Important

e You have control over the model: Everyone can have a different slope but they
don’t have to

— Both random intercepts and slopes: People can have different change
over time
— Only random intercepts: Everyone has the same change over time

2.1.13 Mixed model: Output in R

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
method [lmerModLmerTest]
Formula: dlpfc ~ 1 + agel2 + tx + agel2 * tx + (1 + agel2 | id)
Data: ef_uni

AIC BIC loglik deviance df.resid
3502.5  35643.9 -1743.3  3486.5 1296

Scaled residuals:
Min 1Q Median 3Q Max
-2.89823 -0.50229 -0.02245 0.51797 2.80891

Random effects:



Groups  Name Variance Std.Dev. Corr

id (Intercept) 0.67110 0.8192
agel2 0.05248 0.2291 -0.37
Residual 0.48857 0.6990

Number of obs: 1304, groups: id, 342

Fixed effects:

Estimate Std. Error df t value Pr(>|t])
(Intercept) 0.58230 0.07792 341.09983 7.473 6.63e-13 *x*x
agel2 0.11158 0.03059 335.26580 3.648 0.000307 **x
tx -0.06801 0.10933 342.28563 -0.622 0.534346
agel2:tx 0.01185 0.04298 338.26053 0.276 0.782972
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) agel2 tx

agel2 -0.550

tx -0.713 0.392

agel2:tx 0.391 -0.712 -0.552



2.1.14 Mixed model: Output in SPSS

Mixed Model Analysis

Model Dimension?
Covariance Number of
r Number of Levels Structure Parameters Subject Variables
Fixed Effects | Intercept 1 1
age12 1 1
% 1 1
age12 *tx 1 1
Random Effects Intercept + age12°® 2 Unstructured 3 id
Residual 1
Total 6 8

a. Dependent Variable: dipfc.

syntax reference quide for more information.

b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield
results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current

+
Information Criteria®

-2 Log Likelihood 3486.503
Akaike's Information Criterion 3502.503
(AIC)

Huryich and Tsai's Criterion 3502.615
(AICC)

Bozdogan's Criterion (CAIC) 3551.889
Schwarz's Bayesian Criterion 3543.889
(BIC)

The information criteria are displayed in
smaller-is-better form.

a. Dependent Variable: dipfc.




Fixed Effects

Type lll Tests of Fixed Effects?

Source Numerator df Denominator df F Sig.
Intercept 1 341.102 55.853 .000
agei2 1 335.258 13.305 .000
tx 1 342.288 387 .534
agel12 * tx 1 338.253 076 783
a. Dependent Variable: dipfc.

Estimates of Fixed Effects?

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept .582297 077915 341.102 7.473 .000 429043 .735552
age12 .111581 .030590 335.258 3.648 .000 .051408 71754
tx -.068006 .109332 342.288 -622 534 -.283052 147040
agel2 * tx .011849 .042984 338.253 276 .783 -.072700 .096399

Covariance Parameters

Estimates of Covariance Parameters?

95% Confidence Interval
Parameter Estimate Std. Error Wald 2 Sig. Lower Bound Upper Bound
Residual .488568 .027363 17.855 .000 437777 .545253
Intercept + age12 [subject = id] | UN (1,1) .671099 .080192 8.369 .000 .530975 .848201
UN (2,1) -.070179 .025878 -2.712 007 -.120898 -.019460
UN (2,2) .052476 .012977 4.044 .000 .032320 .085204

Random Effect Covariance Structure

(G
Intercept | id agel2|id
Intercept | id 671099 -.070179
agel2 | id -.070179 052476
Unstructured




2.1.15 Fixed effects: Means or averages

term estimate | std.error | statistic df | p.value
(Intercept) 0.582 0.078 7.473 | 341.100 0.000
agel2 0.112 0.031 3.648 | 335.266 0.000
tx -0.068 0.109 -0.622 | 342.286 0.534
agel2:tx 0.012 0.043 0.276 | 338.261 0.783

e R: t-tests with no df or p-values with just lmed4 package
— df and p-values with lmerTest package

¢ SPSS: t-tests

2.1.16 Fixed effects: Interpretation

e Y =0.582+ 0.112(agel2) + —0.068(tx) + 0.012(agel2 * tx)

— tx = 0 (in blue): Y = 0.582 4 0.112(agel2)
* Intercept: Expected dlpfc when agel2 = 0, for group tx = 0
* Slope: Change in dlpfc for 1 unit change in age12, for group tx = 0

—tx =1 (inred): Y =0.514 4+ 0.123(agel2)

* Intercept: Expected dlpfc when agel2 = 0, for group tx = 1
% Slope: Change in dlpfc for 1 unit change in age12, for group tx = 1

10



2.1.17 Fixed effects: Figure

2.1.18 Random effects: Variances

term estimate
var___ (Intercept) 0.671
cov___ (Intercept).agel2 -0.070
var___ agel?2 0.052
var___ Observation 0.489

e R: No test statistics
o SPSS: z-tests (p-value/2 for variances)

2.1.19 Random effects: Interpretation

e Intercept variance: Variance of individual intercepts

¢ Slope variance: Variance of individual slopes

e Correlation between intercept and slope: Correlation between individual intercepts and
slopes

— How is a person’s intercept related to their slope?
¢ Residual: Error

— How well we do at predicting the individual trajectory

11



2.1.20 Prediction interval: Fixed 4+ random

o Average effects with individual variation

— What do typical individual effects look like?
— Assume normally distributed variance: estimate + 1.96 x SD

¢ Prediction intervals
— Interval for likely values of individual intercepts and slopes
e Not confidence intervals

— Sampling distribution of test statistic
— You get those for fixed effects

2.1.21 Prediction interval: Fixed 4+ random

o Average intercept (for tx = 0) = 0.582

— 1.96 x SD = 1.96 x 0.819 = 1.606
— 95% of individual intercepts are in [—1.023, 2.188]

o Average slope (for tx = 0) = 0.112

— 1.96 x SD = 1.96 x 0.229 = 0.449
— 95% of individual slopes are in [—0.337, 0.561]

12



2.1.22 Means + individual variability
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3 LMM: Some more details

3.1 Equations

3.1.1 Linear mixed model: Equations

Y= X8 + Zy + ¢
N <
fixed effects  random effects ~ residual

¢ Fixed effects: Average effects of predictors

— Like regression coefficients

¢ Random effects: Individual variation around those averages

— Variances and covariances

¢ Residual: Error in predicting individual trajectories

— Also a variance (but usually not interpreted)

13



3.1.2 Linear mixed model: Equations

e Random intercept and slope

— Yj; = Boo + Brolagel2y;) + Boy (tz;) + Bri(agel2;;)(ta;) +ro; + rii(agel2;;) + ey
fixed effects random effects res?t’i_{lal

¢ Random effects are normally distributed with mean 0 and variance-covariance matrix G

- N(O7 G)
2
— G = |:Ur0i 2:|
O-Toﬁu, 0-7’11:

3.1.3 Linear mixed model: Equations

o Random intercept only

— Y, = Boo + Brolagel2,;) + Boy (tr;) + By (agel2; ;) (tx;) + Toi + €

—
fixed effects random effects  residual

¢ Random effects are normally distributed with mean 0 and variance-covariance matrix G

- v~ N(0,G)
— No random slopes, so G = [Urof]

3.1.4 Example data: Equations

¢ Random intercept and slope

— Y,; = 0.582 + 0.112(agel2,;) — 0.068(tx) + 0.012(tx)(agel2;;) + 1o; + 11;(agel2;;) + i
fixed effects random effects residual

¢ Random effects are normally distributed with mean 0 and variance-covariance matrix G

[T’ oy _ [0671 —0.07
Oroirss amz —0.07 0.052
— Can convert variances and covariances into SDs and correlations for interpretation

« e.g., V0.671 = 0.819

14



3.2 Predictors
3.2.1 Adding predictors to the model

e The example model has two predictors

— Treatment (tx): Categorical (dummy code)
* Time-invariant predictor: Same value at all times
— Age (agel2): Continuous

*x Time-varying predictor: Different value at each time
o Two types of predictors are entered into model in different ways

— Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of school
psychology, 48(1), 85-112.

3.2.2 Data: Executive functioning dataset

id | sex | tx | wave | dlpfc ef age | agel2
1 110 11-0.184 | 2.167 | 12.027 | 0.027
1 110 2| 1.129 | 1.806 | 13.058 | 1.058
1 110 31 -0.840 | 1.444 | 14.074 | 2.074
1 11 0 41 0472 | 2.889 | 15.112 | 3.112
2 110 1| 0.801 | 0.722 | 12.089 | 0.089
2 11 0 2| 1.129 | 1.444 | 13.124 | 1.124
2 110 3| 0.801 | 1.806 | 13.997 | 1.997
2 11 0 4 | 1.457 | 2.528 | 15.021 | 3.021
3 1] 1 1] 0472 | 3.250 | 11.953 | -0.047
3 1] 1 2| 1.129 | 3.250 | 13.048 | 1.048
3 1| 1 3| 0.144 | 2.528 | 13.820 | 1.820
3 171 4| 0.144 | 2.528 | 15.058 | 3.058
4 0| 0 1| 0472 | 3.611 | 12.076 | 0.076
4 0] 0 2| 0472 | 4.333 | 12.845 | 0.845
4 0] 0 3| 0472|3972 | 13.818 | 1.818
4 0] 0 4| 0472 | 3.972 | 14.931 | 2.931

3.2.3 LMM = Muiltilevel model

¢ LMM is also a multilevel model where

— Level 1: Occasions
— Level 2: Person

15



— Multiple occasions are nested within each person (L1 w/in L2)
e LMM can be re-written in terms of L1 and L2

— Time-varying predictors go in L1 (occasions) part
— Time-invariant predictors go in L2 (person) part

3.2.4 Multilevel models: Adding predictors

o Level 1: Trajectories
= Y, = mo; + my;(agel2;;) +e;;
e Level 2: People

— 7o = Boo + Bor (tz;) + 70,
— Ty = Bro + By (tw;) + 1y,

e Combined: Put them together
— Y, = Boo + Brolagel2;;) + By (tz;) + By (agel2,; ;) (tx;) +
Toi T Tli(a9612ij> + €

3.3 Centering
3.3.1 Why center predictors?

1. Interactions: Reduce collinearity

2. Interactions and more generally: Improve interpretability

o Intercept: Predicted outcome when X = 0
o What if X = 0 doesn’t exist or is somewhere useless?

3. Mixed models: Unconflate time-specific (L1) and person-specific (L2) relationships

3.3.2 Why does this matter so much for mixed models?

o Level 1 (occasion) observations have two kinds of information

— Occasion (L1)
— Person (L2)

e If you ask me one day if I'm depressed, that gives you information about

— How depressed I am that day (occasion, L1)
— How depressed I generally am (person, L2)

16



3.3.3 Centering is more complicated

o Grand mean centering (GMC)

— Center all observations at the grand mean of all observations
— Doesn’t change the relationships among variables

o Centering within cluster (CWC)

— Center each person’s observations at the mean of that person
— Does change the relationships among variables

3.3.4 Figure: Uncentered
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3.3.5 Figure: GMC
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3.3.7 GMC vs CWC

o Centering changes the context for the different clusters (L2: People)

— GMC maintains mean differences between people on L1 predictor
x What is a person like compared to other people?
— CWOC leliminates differences between people on L1 predictor

x What are people like compared to their own mean?

o Different contexts means different interpretations for both level 1 and level 2 predictors

3.3.8 Centering predictors: Some references

e Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors
in multilevel models: Best practices and interpretation. Psychological Methods.

e Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating
level-specific effects of control variables when primary interest lies in level-2 effects.
British Journal of Mathematical and Statistical Psychology, 73, 194-211.

o Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how
it relates to centering in multilevel modeling. Psychological methods, 25(3), 365.

o Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel mod-
els across different combinations of model specification and estimation. Advances in
methods and practices in psychological science, 2(3), 288-311.

o West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel modeling: Current
and future applications in personality research. Journal of personality, 79(1), 2-50.

e Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional
multilevel models: a new look at an old issue. Psychological methods, 12(2), 121.

3.3.9 Centering time

o “Time” is a special predictor
— Center time variable so that 0 is at a meaningful point

— Intercept: Expected value of outcome when X = 0

x Age = 07
x Baseline?
x Centered age at specific time

19



3.4 Shape of change

3.4.1 Is it linear?

My HOBBY: EXTRAFOLATING

AS YOU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS,
J BETTER GET A
BULK RATE ON
WEDDING (CAKE.

http://www.xked /605
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3.4.2 If not linear, then what?

CURVE-FITTING METHODS
AND THE MESSAGES THEY SEND
. "e :': . » s i ': .
"HEY, I DIDA "L UANTED A CURVED "LOOK, IT'S
REGRESSION! LINE, 50 T MADE ONE TAPERING OFF"
ITH MATH.
. * . . ':.' ..= '
"LOOK, IT'S GROUING *I™M SOPHISTICATED, NOT “T™M MAKING A
UNCONTROLLABLY" LIKE THOSE BUMBLING SCATTER PLOT BUT
PoLYNOMIAL PEOPLE" I DON'T WANT TO!
J ' * o N ' . ,-;1;‘:‘,‘
. * . ® W = * . ®
"T NEED TO CONNECT THESE  “LISTEN, SCIENCE 1S HARD. “T HAVE A THEORY,
TWO UNES, BUT MY FIRST IDEA  BUT IM A SERIOUS AND THIS 15 THE ONLY
DIDNT HAVE ENOUGH MATH®  PERSON DOING MY BEST®  DATA T COULD FIND® |
*T CLICKED SMOOTH “T HAD AN IDEA FOR HOW A5 YOU CAN SEE, THIS
LINES IN EXCEL? To CLEAN UP THE DATA. MODEL SMOCTHLY FiTs
WHAT DO YOU THINK?* THE- AT MOND DoV
EXTEND IT ARARAR!"
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3.4.3 Shape of change: L1 equation

e Linear change

=Y, =y + my;(agel2;;) +e;;

¢ Quadratic change

=Y, =my; + my(agel2;;) + 7T2i<a9612ij)2 + €

e Logarithmic change

= Yy = mo; + m1i(Infagel2y;)) + ey

3.4.4 Non-linear change

e Many phases of development or change are non-linear

— Increase followed by plateau / maintanence
— Decrease to a set point
— Sometimes reflect floor or ceiling effects

¢ Non-linear change in inherently more complex

— Straight lines are easy

3.5 Other stuff
3.5.1 Intraclass correlation (ICC)

¢ Quantifies non-independence in repeated outcome
e Use “random effects ANOVA” or “unconditional mixed model”

— Like “no predictors” model from logistic regression

¢ Ratio of L1 and L2 variability:

o2

~ ICC = o

2 2
Or0i +og

— Proportion of variance due to differences between people

23
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3.5.2 Variance explained and variance reduction

e When you compare your model to the unconditional model

— Variance explained
— How much variance does my model explain?

— Like R?
e When you compare your model to some other (simpler) model

— Variance reduction
— How much is (error) variance reduced by adding whatever you added?
— Like R?

change

3.5.3 Variance explained and variance reduction
e Model 1 is simpler, Model 2 is more complex
— The model you “care about” is Model 2

¢ Reduction in variance =

o2(Modell) — a%(Model?2)
o2(Modell)

3.5.4 Missing data

o Missing on outcome: OK (assuming MAR)
— Uses all observations for a person to create trajectories
e Missing on predictor: Case is dropped

— Make sure no missing or use multiple imputation

3.5.5 Extensions of mixed models

e Change in multiple variables at once
— Baldwin et al. (2014): Complicated but possible
e Nonnormal outcomes

— More difficult in unexpected ways when outcomes are non-normal

24



o SEM framework (Latent growth models)

— Growth as a predictor, simultaneous growth of multiple processes, and other more
complex models

4 Summary

4.1 Summary
4.1.1 Summary of this week

¢ Mixed models as an approach to repeated measures

— Focus on individual change

— Fewer problems with missing data

— Continuous and unevenly spaced time

— Flexible with predictors (continuous and categorical)

¢ Way more complex & interesting than we have time to talk about!

— Adding predictors, shape of change, multiple outcomes
— Take Longitudinal or Multilevel models or Categorical or SEM

4.1.2 Summary: RM ANOVA vs mixed models

« RM ANOVA focuses on group level differences in means at each time point

— Only uses complete cases on the outcome
— Categorical predictors only

e« LMM focuses on individual trajectories over time

— Uses all observations available on the outcome
— Continuous or categorical predictors

e In general, I would always use some version of a mixed model

25
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