
Multivariate: Mixed models
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1 Goals

1.1 Goals

1.1.1 Goals of this section

• Multiple measures of the same thing or related things as an outcome
– Possibly over time

• Want the variables separate: Not PCA / FA
• In this section:

– Last time: MANOVA and repeated measures ANOVA
– Mixed models (this week)
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1.1.2 Goals of this lecture

• Mixed models as an approach to repeated measures

– Focus on individual change
– Fewer problems with missing data
– Continuous and unevenly spaced time
– Flexible with predictors (continuous and categorical)

• Way more complex & interesting than we have time to talk about!

– Take another class: Longitudinal, Multilevel, Categorical, SEM

2 Linear mixed model

2.1 Linear mixed model

2.1.1 Linear mixed model

• Also known as random coefficient models, multilevel models, nested models, hierarchi-
cal linear models, random effects models

• Developed in different disciplines

– Random coefficient models from statistics and biostatistics
– Multilevel models from education

2.1.2 Linear mixed model

• Model for non-independent observations

– Cross-sectional
∗ Multiple schoolchildren with the same teacher
∗ Employees who work in teams or workgroups

– Longitudinal
∗ Multiple observations from the same individual over time

• Observations from same class/team/person are more similar to one another than
observations from different classes/teams/persons
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2.1.3 How not to do it

https://xkcd.com/2533

2.1.4 Non-independence

• Non-independence means that there is some redundancy (or correlation) between
observations

– Effective sample size is smaller that the actual sample size
∗ Collect 100 observations but we only have (for example) 72 obs’ worth of infor-

mation, due to correlations between obs

• Smaller effective sample size means standard error is underestimated if you ignore
non-independence

– How much the standard errors are underestimated depends on how much the obser-
vations are related to one another

2.1.5 Linear mixed model: Motivation

• Linear mixed model (LMM): Extension of general linear model (GLM)

– Partitions variation, just like ANOVA and regression
– But more ways to partition and more control over the form

2.1.6 Linear mixed model: Motivation

• How are observations related to one another?

– Linear regression: They’re not (Independence)
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– Between-subjects ANOVA: They’re not (Independence)
– Repeated-measures ANOVA: According to “compound symmetry”
– LMM has two ways to do this

∗ Random effects (this class)
∗ Correlated residuals (not this class)

2.1.7 Random effects

• Relationship between time and outcome

– X axis = time
– Y axis = outcome

• Random effects: Relationship can be different for each person

– Differences in intercept = random intercepts
– Differences in change over time = random slopes
– Can have one or other or both

2.1.8 Data: Executive functioning dataset

id sex tx wave dlpfc ef age age12
1 1 0 1 -0.184 2.167 12.027 0.027
1 1 0 2 1.129 1.806 13.058 1.058
1 1 0 3 -0.840 1.444 14.074 2.074
1 1 0 4 0.472 2.889 15.112 3.112
2 1 0 1 0.801 0.722 12.089 0.089
2 1 0 2 1.129 1.444 13.124 1.124
2 1 0 3 0.801 1.806 13.997 1.997
2 1 0 4 1.457 2.528 15.021 3.021
3 1 1 1 0.472 3.250 11.953 -0.047
3 1 1 2 1.129 3.250 13.048 1.048
3 1 1 3 0.144 2.528 13.820 1.820
3 1 1 4 0.144 2.528 15.058 3.058
4 0 0 1 0.472 3.611 12.076 0.076
4 0 0 2 0.472 4.333 12.845 0.845
4 0 0 3 0.472 3.972 13.818 1.818
4 0 0 4 0.472 3.972 14.931 2.931
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2.1.9 Individual trajectories for first 4 people
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2.1.10 All individual trajectories: Spaghetti plot
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2.1.11 Assumptions

• Linear regression assumes independence of observations

– Definitely not true here
– What should we do?

• We can still use the regression lines for each person

– Non-independence only a problem for estimating standard errors
– Can use the estimates of individual intercepts and slopes

2.1.12 So I just report 100 intercepts and slopes?

• What do we do with all those regression lines?

– Fixed effects: Average of intercepts and slopes
– Random effects: Variance of intercepts and slopes

 Important

• You have control over the model: Everyone can have a different slope but they
don’t have to

– Both random intercepts and slopes: People can have different change
over time

– Only random intercepts: Everyone has the same change over time

2.1.13 Mixed model: Output in R

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
method [lmerModLmerTest]

Formula: dlpfc ~ 1 + age12 + tx + age12 * tx + (1 + age12 | id)
Data: ef_uni

AIC BIC logLik deviance df.resid
3502.5 3543.9 -1743.3 3486.5 1296

Scaled residuals:
Min 1Q Median 3Q Max

-2.89823 -0.50229 -0.02245 0.51797 2.80891

Random effects:
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Groups Name Variance Std.Dev. Corr
id (Intercept) 0.67110 0.8192

age12 0.05248 0.2291 -0.37
Residual 0.48857 0.6990
Number of obs: 1304, groups: id, 342

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.58230 0.07792 341.09983 7.473 6.63e-13 ***
age12 0.11158 0.03059 335.26580 3.648 0.000307 ***
tx -0.06801 0.10933 342.28563 -0.622 0.534346
age12:tx 0.01185 0.04298 338.26053 0.276 0.782972
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) age12 tx

age12 -0.550
tx -0.713 0.392
age12:tx 0.391 -0.712 -0.552
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2.1.14 Mixed model: Output in SPSS
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2.1.15 Fixed effects: Means or averages

term estimate std.error statistic df p.value
(Intercept) 0.582 0.078 7.473 341.100 0.000
age12 0.112 0.031 3.648 335.266 0.000
tx -0.068 0.109 -0.622 342.286 0.534
age12:tx 0.012 0.043 0.276 338.261 0.783

• R: 𝑡-tests with no df or 𝑝-values with just lme4 package

– df and 𝑝-values with lmerTest package

• SPSS: 𝑡-tests

2.1.16 Fixed effects: Interpretation

• 𝑌 = 0.582 + 0.112(𝑎𝑔𝑒12) + −0.068(𝑡𝑥) + 0.012(𝑎𝑔𝑒12 ∗ 𝑡𝑥)

– tx = 0 (in 𝑏𝑙𝑢𝑒): 𝑌 = 0.582 + 0.112(𝑎𝑔𝑒12)
∗ Intercept: Expected dlpfc when age12 = 0, for group tx = 0
∗ Slope: Change in dlpfc for 1 unit change in age12, for group tx = 0

– tx = 1 (in 𝑟𝑒𝑑): 𝑌 = 0.514 + 0.123(𝑎𝑔𝑒12)
∗ Intercept: Expected dlpfc when age12 = 0, for group tx = 1
∗ Slope: Change in dlpfc for 1 unit change in age12, for group tx = 1
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2.1.17 Fixed effects: Figure
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2.1.18 Random effects: Variances

term estimate
var__(Intercept) 0.671
cov__(Intercept).age12 -0.070
var__age12 0.052
var__Observation 0.489

• R: No test statistics
• SPSS: 𝑧-tests (𝑝-value/2 for variances)

2.1.19 Random effects: Interpretation

• Intercept variance: Variance of individual intercepts
• Slope variance: Variance of individual slopes
• Correlation between intercept and slope: Correlation between individual intercepts and

slopes

– How is a person’s intercept related to their slope?

• Residual: Error

– How well we do at predicting the individual trajectory
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2.1.20 Prediction interval: Fixed + random

• Average effects with individual variation

– What do typical individual effects look like?
– Assume normally distributed variance: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 1.96 × 𝑆𝐷

• Prediction intervals

– Interval for likely values of individual intercepts and slopes

• Not confidence intervals

– Sampling distribution of test statistic
– You get those for fixed effects

2.1.21 Prediction interval: Fixed + random

• Average intercept (for tx = 0) = 0.582
– 1.96 × 𝑆𝐷 = 1.96 × 0.819 = 1.606
– 95% of individual intercepts are in [−1.023, 2.188]

• Average slope (for tx = 0) = 0.112
– 1.96 × 𝑆𝐷 = 1.96 × 0.229 = 0.449
– 95% of individual slopes are in [−0.337, 0.561]
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2.1.22 Means + individual variability
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3 LMM: Some more details

3.1 Equations

3.1.1 Linear mixed model: Equations

𝑌 = X𝛽⏟
fixed effects

+ Z𝛾⏟
random effects

+ 𝜖⏟
residual

• Fixed effects: Average effects of predictors

– Like regression coefficients

• Random effects: Individual variation around those averages

– Variances and covariances

• Residual: Error in predicting individual trajectories

– Also a variance (but usually not interpreted)
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3.1.2 Linear mixed model: Equations

• Random 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑠𝑙𝑜𝑝𝑒

– 𝑌𝑖𝑗 = 𝛽00 + 𝛽10(𝑎𝑔𝑒12𝑖𝑗) + 𝛽01(𝑡𝑥𝑖) + 𝛽11(𝑎𝑔𝑒12𝑖𝑗)(𝑡𝑥𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fixed effects

+ 𝑟0𝑖 + 𝑟1𝑖(𝑎𝑔𝑒12𝑖𝑗)⏟⏟⏟⏟⏟⏟⏟
random effects

+ 𝑒𝑖𝑗⏟
residual

• Random effects are normally distributed with mean 0 and variance-covariance matrix G

– 𝛾 ∼ 𝑁(0, G)
– G = [ 𝜎𝑟0𝑖

2

𝜎𝑟0𝑖𝑟1𝑖
𝜎𝑟1𝑖

2]

3.1.3 Linear mixed model: Equations

• Random 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 only

– 𝑌𝑖𝑗 = 𝛽00 + 𝛽10(𝑎𝑔𝑒12𝑖𝑗) + 𝛽01(𝑡𝑥𝑖) + 𝛽11(𝑎𝑔𝑒12𝑖𝑗)(𝑡𝑥𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fixed effects

+ 𝑟0𝑖⏟
random effects

+ 𝑒𝑖𝑗⏟
residual

• Random effects are normally distributed with mean 0 and variance-covariance matrix G

– 𝛾 ∼ 𝑁(0, G)
– No random slopes, so G = [𝜎𝑟0𝑖

2]

3.1.4 Example data: Equations

• Random 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑠𝑙𝑜𝑝𝑒

– 𝑌𝑖𝑗 = 0.582 + 0.112(𝑎𝑔𝑒12𝑖𝑗) − 0.068(𝑡𝑥) + 0.012(𝑡𝑥)(𝑎𝑔𝑒12𝑖𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fixed effects

+ 𝑟0𝑖 + 𝑟1𝑖(𝑎𝑔𝑒12𝑖𝑗)⏟⏟⏟⏟⏟⏟⏟
random effects

+ 𝑒𝑖𝑗⏟
residual

• Random effects are normally distributed with mean 0 and variance-covariance matrix G

– G = [ 𝜎𝑟0𝑖
2 𝜎𝑟0𝑖𝑟1𝑖

𝜎𝑟0𝑖𝑟1𝑖
𝜎𝑟1𝑖

2 ] = [0.671 −0.07
−0.07 0.052 ]

– Can convert variances and covariances into SDs and correlations for interpretation
∗ e.g.,

√
0.671 = 0.819
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3.2 Predictors

3.2.1 Adding predictors to the model

• The example model has two predictors

– Treatment (tx): Categorical (dummy code)
∗ Time-invariant predictor: Same value at all times

– Age (age12): Continuous
∗ Time-varying predictor: Different value at each time

• Two types of predictors are entered into model in different ways

– Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of school
psychology, 48(1), 85-112.

3.2.2 Data: Executive functioning dataset

id sex tx wave dlpfc ef age age12
1 1 0 1 -0.184 2.167 12.027 0.027
1 1 0 2 1.129 1.806 13.058 1.058
1 1 0 3 -0.840 1.444 14.074 2.074
1 1 0 4 0.472 2.889 15.112 3.112
2 1 0 1 0.801 0.722 12.089 0.089
2 1 0 2 1.129 1.444 13.124 1.124
2 1 0 3 0.801 1.806 13.997 1.997
2 1 0 4 1.457 2.528 15.021 3.021
3 1 1 1 0.472 3.250 11.953 -0.047
3 1 1 2 1.129 3.250 13.048 1.048
3 1 1 3 0.144 2.528 13.820 1.820
3 1 1 4 0.144 2.528 15.058 3.058
4 0 0 1 0.472 3.611 12.076 0.076
4 0 0 2 0.472 4.333 12.845 0.845
4 0 0 3 0.472 3.972 13.818 1.818
4 0 0 4 0.472 3.972 14.931 2.931

3.2.3 LMM = Multilevel model

• LMM is also a multilevel model where

– Level 1: Occasions
– Level 2: Person
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– Multiple occasions are nested within each person (L1 w/in L2)

• LMM can be re-written in terms of L1 and L2

– Time-varying predictors go in L1 (occasions) part
– Time-invariant predictors go in L2 (person) part

3.2.4 Multilevel models: Adding predictors

• Level 1: Trajectories

– 𝑌𝑖𝑗 = 𝜋0𝑖 + 𝜋1𝑖(𝑎𝑔𝑒12𝑖𝑗) + 𝑒𝑖𝑗

• Level 2: People

– 𝜋0𝑖 = 𝛽00 + 𝛽01(𝑡𝑥𝑖) + 𝑟0𝑖
– 𝜋1𝑖 = 𝛽10 + 𝛽11(𝑡𝑥𝑖) + 𝑟1𝑖

• Combined: Put them together

– 𝑌𝑖𝑗 = 𝛽00 + 𝛽10(𝑎𝑔𝑒12𝑖𝑗) + 𝛽01(𝑡𝑥𝑖) + 𝛽11(𝑎𝑔𝑒12𝑖𝑗)(𝑡𝑥𝑖) +
𝑟0𝑖 + 𝑟1𝑖(𝑎𝑔𝑒12𝑖𝑗) + 𝑒𝑖𝑗

3.3 Centering

3.3.1 Why center predictors?

1. Interactions: Reduce collinearity

2. Interactions and more generally: Improve interpretability

• Intercept: Predicted outcome when 𝑋 = 0
• What if 𝑋 = 0 doesn’t exist or is somewhere useless?

3. Mixed models: Unconflate time-specific (L1) and person-specific (L2) relationships

3.3.2 Why does this matter so much for mixed models?

• Level 1 (occasion) observations have two kinds of information

– Occasion (L1)
– Person (L2)

• If you ask me one day if I’m depressed, that gives you information about

– How depressed I am that day (occasion, L1)
– How depressed I generally am (person, L2)
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3.3.3 Centering is more complicated

• Grand mean centering (GMC)

– Center all observations at the grand mean of all observations
– Doesn’t change the relationships among variables

• Centering within cluster (CWC)

– Center each person’s observations at the mean of that person
– Does change the relationships among variables

3.3.4 Figure: Uncentered
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3.3.5 Figure: GMC
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3.3.6 Figure: CWC
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3.3.7 GMC vs CWC

• Centering changes the context for the different clusters (L2: People)

– GMC maintains mean differences between people on L1 predictor
∗ What is a person like compared to other people?

– CWC leliminates differences between people on L1 predictor
∗ What are people like compared to their own mean?

• Different contexts means different interpretations for both level 1 and level 2 predictors

3.3.8 Centering predictors: Some references

• Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors
in multilevel models: Best practices and interpretation. Psychological Methods.

• Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating
level‐specific effects of control variables when primary interest lies in level‐2 effects.
British Journal of Mathematical and Statistical Psychology, 73, 194-211.

• Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how
it relates to centering in multilevel modeling. Psychological methods, 25(3), 365.

• Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel mod-
els across different combinations of model specification and estimation. Advances in
methods and practices in psychological science, 2(3), 288-311.

• West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel modeling: Current
and future applications in personality research. Journal of personality, 79(1), 2-50.

• Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional
multilevel models: a new look at an old issue. Psychological methods, 12(2), 121.

3.3.9 Centering time

• “Time” is a special predictor

– Center time variable so that 0 is at a meaningful point
– Intercept: Expected value of outcome when 𝑋 = 0

∗ Age = 0?
∗ Baseline?
∗ Centered age at specific time
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3.4 Shape of change

3.4.1 Is it linear?

http://www.xkcd/605
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3.4.2 If not linear, then what?
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3.4.3 Shape of change: L1 equation

• Linear change

– 𝑌𝑖𝑗 = 𝜋0𝑖 + 𝜋1𝑖(𝑎𝑔𝑒12𝑖𝑗) + 𝑒𝑖𝑗

• Quadratic change

– 𝑌𝑖𝑗 = 𝜋0𝑖 + 𝜋1𝑖(𝑎𝑔𝑒12𝑖𝑗) + 𝜋2𝑖(𝑎𝑔𝑒12𝑖𝑗)2 + 𝑒𝑖𝑗

• Logarithmic change

– 𝑌𝑖𝑗 = 𝜋0𝑖 + 𝜋1𝑖(𝑙𝑛(𝑎𝑔𝑒12𝑖𝑗)) + 𝑒𝑖𝑗

3.4.4 Non-linear change

• Many phases of development or change are non-linear

– Increase followed by plateau / maintanence
– Decrease to a set point
– Sometimes reflect floor or ceiling effects

• Non-linear change in inherently more complex

– Straight lines are easy

3.5 Other stuff

3.5.1 Intraclass correlation (ICC)

• Quantifies non-independence in repeated outcome
• Use “random effects ANOVA” or “unconditional mixed model”

– Like “no predictors” model from logistic regression

• Ratio of L1 and L2 variability:

– 𝐼𝐶𝐶 = 𝜎2
𝑟0𝑖

𝜎2𝑟0𝑖 +𝜎2𝑒
– Proportion of variance due to differences between people
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3.5.2 Variance explained and variance reduction

• When you compare your model to the unconditional model

– Variance explained
– How much variance does my model explain?
– Like 𝑅2

• When you compare your model to some other (simpler) model

– Variance reduction
– How much is (error) variance reduced by adding whatever you added?
– Like 𝑅2

𝑐ℎ𝑎𝑛𝑔𝑒

3.5.3 Variance explained and variance reduction

• Model 1 is simpler, Model 2 is more complex

– The model you “care about” is Model 2

• Reduction in variance =

𝜎2
𝑒(𝑀𝑜𝑑𝑒𝑙1) − 𝜎2

𝑒(𝑀𝑜𝑑𝑒𝑙2)
𝜎2𝑒(𝑀𝑜𝑑𝑒𝑙1)

3.5.4 Missing data

• Missing on outcome: OK (assuming MAR)

– Uses all observations for a person to create trajectories

• Missing on predictor: Case is dropped

– Make sure no missing or use multiple imputation

3.5.5 Extensions of mixed models

• Change in multiple variables at once

– Baldwin et al. (2014): Complicated but possible

• Nonnormal outcomes

– More difficult in unexpected ways when outcomes are non-normal
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• SEM framework (Latent growth models)

– Growth as a predictor, simultaneous growth of multiple processes, and other more
complex models

4 Summary

4.1 Summary

4.1.1 Summary of this week

• Mixed models as an approach to repeated measures

– Focus on individual change
– Fewer problems with missing data
– Continuous and unevenly spaced time
– Flexible with predictors (continuous and categorical)

• Way more complex & interesting than we have time to talk about!

– Adding predictors, shape of change, multiple outcomes
– Take Longitudinal or Multilevel models or Categorical or SEM

4.1.2 Summary: RM ANOVA vs mixed models

• RM ANOVA focuses on group level differences in means at each time point

– Only uses complete cases on the outcome
– Categorical predictors only

• LMM focuses on individual trajectories over time

– Uses all observations available on the outcome
– Continuous or categorical predictors

• In general, I would always use some version of a mixed model
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