
Multivariate: Linear regression
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• Introduce the concept of composites and the statistical operations we can perform
on them
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• Review linear regression

• Summarize / review ordinary least squares estimation

2 Composites

2.1 Composites or linear combinations

2.1.1 Composites or linear combinations

All multivariate procedures (and most statistical procedures, in general) rely on composites
of variables, also called linear combinations of variables

Statistical procedures create these linear combinations and then do something with them

• Usually minimize or maximize some quantity

– Least squares estimation (minimize sum of squared residuals)
– Maximum likelihoood (maximize likelihood function)

2.1.2 Composites

A composite or linear combination is a way to combine multiple variables into a single
variable

To make a composite, you need variables and weights

Usually:

• One set of weights for all subjects (𝑗 subscript for variable 𝑗)
• Each subject has their own variable values (𝑖𝑗 subscript for subject 𝑖 and variable 𝑗)

2.1.3 Composites

In general, composites look like:

𝑢𝑖 = Σ𝑎𝑗𝑋𝑖𝑗 = 𝑎1𝑋𝑖1 + 𝑎2𝑋𝑖2 + ⋯ + 𝑎𝑝𝑋𝑖𝑝

for subject 𝑖 across variables 𝑗 = 1 to p

• The 𝑎𝑗s are the weights and the 𝑋𝑖𝑗s are the variables

Remember:
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• One set of weights, each subject has value for each variable
• One composite score for each subject (subscript 𝑖)

2.1.4 Examples of composites

Calculating GPA: Total of 18 units

• 5 unit class with an A: 5
18 of the grade

• 4 unit class with a B: 4
18 of the grade

• 4 unit class with a C: 4
18 of the grade

• 5 unit class with a B: 5
18 of the grade

Variables: A = 4.0, B = 3.0, C = 2.0

𝐺𝑃𝐴 = 5
18(4.0) + 4

18(3.0) + 4
18(2.0) + 5

18(3.0) = 1.11 + 0.67 + 0.44 + 0.83 = 3.05

2.1.5 Examples of composites

Predicted score for linear regression

• Three predictors (variables): 𝑋1, 𝑋2, and 𝑋3
• Three regression coefficients (weights): 𝑏1, 𝑏2, 𝑏3

̂𝑌𝑖 = 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + 𝑏3𝑋𝑖3

• Variables can vary across people (subscript 𝑖)
• Weights are the same for everyone (no subscipt 𝑖)
• Composite is predicted value for each person (subscript 𝑖)

2.1.6 Weights

The general strategy in multivariate analysis is to

• Select a set of weights
• That form a composite
• That leads to a specific desired outcome

For example: Least squares criterion for linear regression

• Desired outcome: Minimize the sum of the squared residuals
• Choose weights (𝑏𝑗s) that minimize Σ(𝑌 − ̂𝑌 )2
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2.2 Composites in multivariate analysis

2.2.1 Composites in multivariate analysis

Composites are the basis for all multivariate analyses

Focus on the relationship between

• A statistic calculated on a composite
• A statistic calculated on the individual measures that go into the composite

We will do all of this in matrix algebra

2.2.2 Composites in multivariate analysis

Any statistic on a composite can be written as a composite of the corresponding statistics on
the original variables (where the weights are the same)

One common example:

• The mean of a composite = the composite of the means of all the variables that went
into the composite

2.3 Forming a composite

2.3.1 Form a composite, algebra-style

Subject 1: 𝑢1 = 𝑎1𝑋11 + 𝑎2𝑋12 + 𝑎3𝑋13 + ⋯ + 𝑎𝑝𝑋1𝑝

Subject 2: 𝑢2 = 𝑎1𝑋21 + 𝑎2𝑋22 + 𝑎3𝑋23 + ⋯ + 𝑎𝑝𝑋2𝑝

Subject 𝑛: 𝑢𝑛 = 𝑎1𝑋𝑛1 + 𝑎2𝑋𝑛2 + 𝑎3𝑋𝑛3 + ⋯ + 𝑎𝑝𝑋𝑛𝑝

• Same weights for all subjects
• Different variable values for each subject

• Different composite values for each subject
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2.3.2 Form a composite, matrix-style

• Data matrix X with 𝑛 subjects and 𝑝 variables

Spreadsheet representation

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑋1 ⋯ 𝑋𝑗 𝑋𝑝
1 𝑋11 ⋯ 𝑋1𝑗 𝑋1𝑝
2 𝑋21 ⋯ 𝑋2𝑗 𝑋2𝑝
3 𝑋31 ⋯ 𝑋3𝑗 𝑋3𝑝
⋮ ⋮ ⋱ ⋮ ⋮
𝑛 𝑋𝑛1 ⋯ 𝑋𝑛𝑗 𝑋𝑛𝑝

2.3.3 Form a composite, matrix-style

• Data matrix X is an 𝑛 × 𝑝 matrix

Matrix representation

X =
⎡
⎢
⎢
⎢
⎣

𝑋11 ⋯ 𝑋1𝑗 𝑋1𝑝
𝑋21 ⋯ 𝑋2𝑗 𝑋2𝑝
𝑋31 ⋯ 𝑋3𝑗 𝑋3𝑝

⋮ ⋱ ⋮ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑗 𝑋𝑛𝑝

⎤
⎥
⎥
⎥
⎦

2.3.4 Form a composite, matrix-style

Weight vector 𝑎

• 𝑎 is a 𝑝 × 1 vector
• One element per variable

𝑎 =
⎡
⎢⎢
⎣

𝑎1
𝑎2
⋮

𝑎𝑝

⎤
⎥⎥
⎦
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2.3.5 Form a composite, matrix-style

Composite vector 𝑢

• 𝑢 is an 𝑛 × 1 vector
• One element per subject

𝑢 =
⎡
⎢⎢
⎣

𝑢1
𝑢2
⋮

𝑢𝑛

⎤
⎥⎥
⎦

= X𝑎 =
⎡
⎢⎢
⎣

𝑋11 ⋯ 𝑋1𝑗 𝑋1𝑝
𝑋21 ⋯ 𝑋2𝑗 𝑋2𝑝

⋮ ⋱ ⋮ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑗 𝑋𝑛𝑝

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑎1
𝑎2
⋮

𝑎𝑝

⎤
⎥⎥
⎦

2.4 Mean, variation, and variance of a composite

2.4.1 Mean of a composite

A composite is something like weighted GPA or predicted score in regression

• Calculated from variables (𝑋s) and weights (𝑎s)

If we wanted to get the mean of a composite, there are two equivalent ways to do that

1. Calculate each person’s composite, then get the mean of those values [Last “Form a
composite, matrix-style” slide]

2. Calculate the mean of each variable, then calculate the composite using those means
[Next slide]

2.4.2 Mean of a composite

The mean of a composite is the composite of the means (of the variables that went into the
composite)

U = 𝑋 𝑎

Three 𝑋s:

U = [𝑋1 𝑋2 𝑋3] ⎡⎢
⎣

𝑎1
𝑎2
𝑎3

⎤⎥
⎦

= 𝑎1 𝑋1 + 𝑎2 𝑋2 + 𝑎3 𝑋3

6



2.4.3 Mean of a composite: Example

X =
⎡
⎢⎢
⎣

5 1 2
9 2 5
4 6 3
2 3 6

⎤
⎥⎥
⎦

𝑎 = ⎡⎢
⎣

2
3
1
⎤⎥
⎦

2.4.4 Mean of a composite V1: Composite first, then mean

Step 1: Get the vector of composites 𝑢 = X𝑎

𝑢 = X𝑎 =
⎡
⎢⎢
⎣

5 1 2
9 2 5
4 6 3
2 3 6

⎤
⎥⎥
⎦

⎡⎢
⎣

2
3
1
⎤⎥
⎦

=

⎡
⎢⎢
⎣

(5 × 2) + (1 × 3) + (2 × 1)
(9 × 2) + (2 × 3) + (5 × 1)
(4 × 2) + (6 × 3) + (3 × 1)
(2 × 2) + (3 × 3) + (6 × 1)

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

15
29
29
19

⎤
⎥⎥
⎦

2.4.5 Mean of a composite V1: Composite first, then mean

Step 2: Calculate the mean composite U from 𝑢

U = 1
𝑛 1′ 𝑢 = 1

4 [1 1 1 1]
⎡
⎢⎢
⎣

15
29
29
19

⎤
⎥⎥
⎦

=

1
4 [(1 × 15) + (1 × 29) + (1 × 29) + (1 × 19)] =
1
4 (92) = 23

2.4.6 Mean of a composite V2: Mean first, then composite

Step 1: Get the mean vector the variables 𝑥 = 1
𝑛 1′ X

𝑥 = 1
𝑛 1′ X = 1

4 [1 1 1 1]
⎡
⎢⎢
⎣

5 1 2
9 2 5
4 6 3
2 3 6

⎤
⎥⎥
⎦

=

1
4 [(1 × 5) + (1 × 9) + (1 × 4) + (1 × 2) (1 × 1) + (1 × 2) + (1 × 6) + (1 × 3) (1 × 2) + (1 × 5) + (1 × 3) + (1 × 6)] =
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1
4 [5 + 9 + 4 + 2 1 + 2 + 6 + 3 2 + 5 + 3 + 6] =
1
4 [20 12 16] = [5 3 4]

2.4.7 Mean of a composite V2: Mean first, then composite

Step 2: Calculate the mean composite U from 𝑥

U = 𝑥 𝑎 = [5 3 4]⎡⎢
⎣

2
3
1
⎤⎥
⎦

=

[(5 × 2) + (3 × 3) + (4 × 1)] = [10 + 9 + 4] = 23

2.4.8 Variation of a composite 1

Variation of a single variable X:

𝑆𝑆𝑋 = 𝑥′ 𝑥 − 1
𝑛 𝑥′ E 𝑥

Variation of a composite:

𝑆𝑆𝑢 = 𝑢′ 𝑢 − 1
𝑛 𝑢′ E 𝑢

2.4.9 Variation of a composite 2

Substitute in the expression for a composite (𝑢 = X𝑎 or 𝑢′ = 𝑎′X′):

𝑆𝑆𝑢 = 𝑎′ X′ X 𝑎 − 1
𝑛 𝑎′ X E X′ 𝑎

Factor out terms: pre-multipliers get pre-factored, post-multipliers get post-factored:

𝑆𝑆𝑢 = 𝑎′ (X′ X − 1
𝑛 X′ E X) 𝑎
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2.4.10 Variation of a composite 3

Remember the variation covariation matrix P:

P = X′ X − 1
𝑛 X′ E X

Substitute 𝑃 into the expression for variation of a composite:

𝑆𝑆𝑢 = 𝑎′ P 𝑎

2.4.11 Variation of a composite 4

Variation of a composite 𝑢: 𝑆𝑆𝑢 = 𝑎′ P 𝑎
Two important points:

1. We can calculate a statistic (mean, variation, variance) about a composite without ever
having to compute the composite 𝑢 itself

2. 𝑎′ P 𝑎 is called a quadratic form

• weight vector × matrix × weight vector
• quadratic = squared (e.g., (𝑋 − 𝑋)2)

2.4.12 Variance of a composite

Variance of a composite 𝑢:

𝑠2
𝑢 = 𝑎′ S 𝑎

where S is the variance covariance matrix:

S = 1
𝑛 − 1 (X′ X − 1

𝑛 X′ E X) = 1
𝑛 − 1 P
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2.4.13 So…

Why do we care about the mean and variance of composites?

Statistical procedures create composites and then

• Do something with them: usually minimize or maximize
• Minimize sum of squared residuals in least squares
• Maximize variance explained by a factor or component

Calculating the variance of the composite directly is computationally easier

Also, quadratic form will be helpful later

2.5 Multiple composites

2.5.1 Two composites on the same variables

. Composite 1 Composite 2
Variables X X
Weights 𝑎 𝑐
Composite 𝑢 = X 𝑎 𝑤 = X 𝑐
Mean of composite 𝑈 = 𝑋 𝑎 𝑊 = 𝑋 𝑐
Variation of composite 𝑎′ P𝑋𝑋 𝑎 𝑐′ P𝑋𝑋 𝑐
Variance of composite 𝑎′ S𝑋𝑋 𝑎 𝑐′ S𝑋𝑋 𝑐
Covariation bet composites 𝑆𝑃𝑈𝑊 = 𝑎′ P𝑋𝑋 𝑐
Covariance bet composites 𝑠𝑈𝑊 = 𝑎′ S𝑋𝑋 𝑐

2.5.2 Two composites on two sets of variables

. Comp 1 on Xs Comp 2 on Ys
Variables X Y
Weights 𝑎 𝑑
Composite 𝑢 = X 𝑎 𝑧 = Y 𝑑
Mean of composite 𝑈 = 𝑋 𝑎 𝑍 = 𝑌 𝑑
Variation of comp 𝑆𝑆𝑈 = 𝑎′ P𝑋𝑋 𝑎 𝑆𝑆𝑍 = 𝑑′ P𝑌 𝑌 𝑑
Variance of comp 𝑠2

𝑈 = 𝑎′ S𝑋𝑋 𝑎 𝑠2
𝑍 = 𝑑′ S𝑌 𝑌 𝑑

Covariation bet comp 𝑆𝑃𝑈𝑍 = 𝑎′ P𝑋𝑌 𝑑
Covariance bet comp 𝑠𝑈𝑍 = 𝑎′ S𝑋𝑌 𝑑
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3 Partitioned Matrices

3.1 Partitioned data matrix

3.1.1 Partitioned data matrix

M = [X Y]

Order (𝑛, 𝑝 + 𝑞): there are 𝑝 X variables and 𝑞 Y variables

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠
𝑋1 … 𝑋𝑝 𝑌1 … 𝑌𝑞

1 𝑋11 … 𝑋1𝑝 𝑌11 … 𝑌1𝑞
… ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑛 𝑋𝑛1 … 𝑋𝑛𝑝 𝑌𝑛1 … 𝑌𝑛𝑞

3.2 Partitioned covariation matrix

3.2.1 Partitioned covariation matrix

P𝑋𝑋,𝑌 𝑌 = M′ M − 1
𝑛M′ E M = [ P𝑋𝑋 P𝑋𝑌

P𝑌 𝑋 P𝑌 𝑌
]

= [ X′ X − 1
𝑛X′ E X X′ Y − 1

𝑛X′ E Y
Y′ X − 1

𝑛Y′ E X Y′ Y − 1
𝑛Y′ E Y ]

3.2.2 Partitioned covariation matrix

P𝑋𝑋,𝑌 𝑌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆𝑆𝑥1 𝑆𝑃𝑥1,𝑥2 … 𝑆𝑃𝑥1,𝑥𝑝 𝑆𝑃𝑥1,𝑦1 𝑆𝑃𝑥1,𝑦2 … 𝑆𝑃𝑥1,𝑦𝑞
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑆𝑃𝑥𝑝,𝑥1 𝑆𝑃𝑥𝑝,𝑥2 … 𝑆𝑆𝑥𝑝 𝑆𝑃𝑥𝑝,𝑦1 𝑆𝑃𝑥𝑝,𝑦2 … 𝑆𝑃𝑥𝑝,𝑦𝑞
𝑆𝑃𝑦1,𝑥1 𝑆𝑃𝑦1,𝑥2 … 𝑆𝑃𝑦1,𝑥𝑝 𝑆𝑆𝑦1 𝑆𝑃𝑦1,𝑦2 … 𝑆𝑃𝑦1,𝑦𝑞

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑆𝑃𝑦𝑞,𝑥1 𝑆𝑃𝑦𝑞,𝑥2 … 𝑆𝑃𝑦𝑞,𝑥𝑝 𝑆𝑃𝑦𝑞,𝑦1 𝑆𝑃𝑦𝑞,𝑦2 … 𝑆𝑆𝑦𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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3.3 Partitioned covariance matrix

3.3.1 Partitioned covariance matrix

S𝑋𝑋,𝑌 𝑌 = 1
(𝑛 − 1) (M′ M − 1

𝑛M′ E M) = [ S𝑋𝑋 S𝑋𝑌
S𝑌 𝑋 S𝑌 𝑌

]

= [
1

(𝑛−1)(X
′ X − 1

𝑛X′ E X) 1
(𝑛−1)(X

′ Y − 1
𝑛X′ E Y)

1
(𝑛−1)(Y

′ X − 1
𝑛Y′ E X) 1

(𝑛−1)(Y
′ Y − 1

𝑛Y′ E Y) ]

3.3.2 Partitioned covariance matrix

S𝑋𝑋,𝑌 𝑌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑠2
𝑥1 𝑠𝑥1,𝑥2 … 𝑠𝑥1,𝑥𝑝 𝑠𝑥1,𝑦1 𝑠𝑥1,𝑦2 … 𝑠𝑥1,𝑦𝑞
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑠𝑥𝑝,𝑥1 𝑠𝑥𝑝,𝑥2 … 𝑠2
𝑥𝑝 𝑠𝑥𝑝,𝑦1 𝑠𝑥𝑝,𝑦2 … 𝑠𝑥𝑝,𝑦𝑞

𝑠𝑦1,𝑥1 𝑠𝑦1,𝑥2 … 𝑠𝑦1,𝑥𝑝 𝑠2
𝑦1 𝑠𝑦1,𝑦2 … 𝑠𝑦1,𝑦𝑞

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑠𝑦𝑞,𝑥1 𝑠𝑦𝑞,𝑥2 … 𝑠𝑦𝑞,𝑥𝑝 𝑠𝑦𝑞,𝑦1 𝑠𝑦𝑞,𝑦2 … 𝑠2

𝑦𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎦

3.4 Partitioned correlation matrix

3.4.1 Partitioned correlation matrix

R𝑋𝑋,𝑌 𝑌 = [ R𝑋𝑋 R𝑋𝑌
R𝑌 𝑋 R𝑌 𝑌

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑟𝑥1,𝑥2 … 𝑟𝑥1,𝑥𝑝 𝑟𝑥1,𝑦1 𝑟𝑥1,𝑦2 … 𝑟𝑥1,𝑦𝑞
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑟𝑥𝑝,𝑥1 𝑟𝑥𝑝,𝑥2 … 1 𝑟𝑥𝑝,𝑦1 𝑟𝑥𝑝,𝑦2 … 𝑟𝑥𝑝,𝑦𝑞
𝑟𝑦1,𝑥1 𝑟𝑦1,𝑥2 … 𝑟𝑦1,𝑥𝑝 1 𝑟𝑦1,𝑦2 … 𝑟𝑦1,𝑦𝑞

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑦𝑞,𝑥1 𝑟𝑦𝑞,𝑥2 … 𝑟𝑦𝑞,𝑥𝑝 𝑟𝑦𝑞,𝑦1 𝑟𝑦𝑞,𝑦2 … 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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4 Linear Regression

4.1 Regression review

4.1.1 Linear regression

Also called OLS (ordinary least squares) regression, normal regression, just “regression”

Data:

• 1 predictor variable, 𝑋
• 1 outcome variable, 𝑌
• Measured on 𝑛 subjects

Problem:

Find an equation that “best” summarizes the relationship between 𝑋 and 𝑌

4.1.2 Linear regression

4.1.3 Linear regression

4.1.4 Linear regression: ̂𝑌 = 𝑏0 + 𝑏1𝑋

̂𝑤𝑒𝑖𝑔ℎ𝑡 = −253.94 + 5.8ℎ𝑒𝑖𝑔ℎ𝑡

• 𝑏0 is the predicted value of 𝑤𝑒𝑖𝑔ℎ𝑡 when ℎ𝑒𝑖𝑔ℎ𝑡 = 0
– Predicted 𝑤𝑒𝑖𝑔ℎ𝑡 for a 0 inch tall person = -253.94

• For a 1-unit difference in 𝑋, we expect 𝑌 to differ by 𝑏1 units

– Expect 5.8 lb diff in 𝑤𝑒𝑖𝑔ℎ𝑡 for 1 inch diff in ℎ𝑒𝑖𝑔ℎ𝑡

Each obs has one outcome value (𝑌𝑖), one predicted value ( ̂𝑌𝑖), and one residual (𝑌𝑖 − ̂𝑌𝑖)
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Figure 1: Relationship between height and weight
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Figure 2: Relationship between height and weight with linear fit
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4.2 Least squares estimation

4.2.1 Least squares estimation

Least squares criterion:

• How we estimate the regression coefficients, 𝑏0 and 𝑏1
• Find 𝑏0 and 𝑏1 that give the smallest Σ ((𝑌𝑖 − ̂𝑌𝑖)2)
• This is our “best fit” line

For linear regression, there is one value of 𝑏0 and one value of 𝑏1 that minimize the residuals

• This is not true for other methods of estimation that we’ll look at later in this course]

4.2.2 𝑌 = 𝑋2
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4.2.3 Functions involving squares

• Functions that have squares in them (like the sum of squared residuals) look like a “U”

– To find the minimum of this function, we need to find the bottom of the “U”

• That happens using calculus (which you don’t need to know)

• But you need to understand what is going on in the process

The tangent line is a line that touches a curve at a single point

4.2.4 Calculus and tangents
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4.2.5 Calculus and tangents

at b = 15
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4.2.6 Calculus and tangents

at b = 12
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4.2.7 Calculus and tangents

at b = 10
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4.2.8 Tangents and minimums

The tangent line is horizontal (𝑠𝑙𝑜𝑝𝑒 = 0) at the minimum

We want to find the minimum of the sum of squared residuals

• We want to find where that tangent line is flat
• Where the tangent line is flat is the value of regression coefficient that meets the least

squares criterion

We find the tangent line by using calculus

• The derivative of a function produces the tangent line
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4.2.9 Least squares solution

1. State the function to be minimized

• Here, it is the sum of squared residuals: Σ(𝑌𝑖 − ̂𝑌𝑖)2

2. Differentiate (take the derivative of) the function, with respect to the constants of
interest

• The constants of interest are 𝑏0 and 𝑏1 here

3. Set those derivatives equal to 0

• These are called the “normal equations”

4. Solve the normal equations for the constants of interest

4.2.10 Step 1. Function to be minimized

Σ(𝑌𝑖 − ̂𝑌𝑖)2 =

Σ(𝑌 − (𝑏1𝑋 + 𝑏0))2 =
Σ(𝑌 − 𝑏1𝑋 − 𝑏0)2 =

Σ(𝑌 2 + 𝑏0
2 + 𝑏1

2𝑋2 − 2𝑏0𝑌 − 2𝑏1𝑋𝑌 + 2𝑏0𝑏1𝑋) =
Σ𝑌 2 + Σ𝑏0

2 + Σ𝑏1
2𝑋2 − Σ2𝑏0𝑌 − Σ2𝑏1𝑋𝑌 + Σ2𝑏0𝑏1𝑋 =

Σ𝑌 2 + 𝑛𝑏0
2 + 𝑏1

2Σ𝑋2 − 2𝑏0Σ𝑌 − 2𝑏1Σ𝑋𝑌 + 2𝑏0𝑏1Σ𝑋

4.2.11 Step 2. Differentiate the functions

For 𝑏1:

𝜕Σ(𝑌 − ̂𝑌 )2

𝜕𝑏1
= 2𝑏1Σ𝑋2 − 2Σ𝑋𝑌 + 2𝑏0Σ𝑋

For 𝑏0:

𝜕Σ(𝑌 − ̂𝑌 )2

𝜕𝑏0
= 2𝑛𝑏0 − 2Σ𝑌 + 2𝑏1Σ𝑋
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4.2.12 Steps 3. and 4. Solve normal equations

For 𝑏1:

2𝑏1Σ𝑋2 − 2Σ𝑋𝑌 + 2𝑏0Σ𝑋 = 0
⋮

𝑏1 = 𝑛Σ𝑋𝑌 − (Σ𝑋)(Σ𝑌 )
𝑛Σ𝑋2 − (Σ𝑋)2 = 𝑆𝑃𝑋𝑌

𝑆𝑆𝑋
= 𝑠𝑋𝑌

𝑠𝑋2

4.2.13 Steps 3. and 4. Solve normal equations

For 𝑏0:

2𝑛𝑏0 − 2Σ𝑌 + 2𝑏1Σ𝑋 = 0
⋮

𝑏0 = 𝑌 − 𝑏1𝑋

4.3 Multiple regression

4.3.1 Multiple regression

The least squares solution gets more complex with more predictors (and thus more regression
coefficients to solve for)

• But similar

Two predictor regression:

• Move from a regression line to a regression plane
• This requires some geometric thinking
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4.3.2 Multiple correlation

• The multiple correlation is the correlation between 𝑌 and ̂𝑌
• If you used least squares estimation, the multiple correlation is the maximum possible

correlation between 𝑌 and ̂𝑌
• The square of the multiple correlation (𝑅2

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒) tells you the proportion of varia-
tion in 𝑌 that is accounted for by the set of predictors

• 𝑅2
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 𝑟2

𝑌 ̂𝑌 = 𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑆𝑆𝑌

= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

4.3.3 Multiple regression and composites

Next week:

• The predicted score in multiple regression is a composite or linear combination

– ̂𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3

• From this scalar version of regression to the matrix version
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