Multivariate: Linear regression

Table of contents

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- Fully transition to **matrix form** for linear regression
- Describe **matrix solution** to least squares estimation

2 Matrices in multiple regression

2.1 Matrices in multiple regression

2.1.1 Matrices in multiple regression

Data matrix

$$
\mathbf{X} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix}
$$

2.1.2 Matrices in multiple regression

Outcome variable

$$
\underbrace{y}_{(n,\,1)} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}
$$

2.1.3 Matrices in multiple regression

Predicted outcome variable

$$
\hat{\underbrace{\hat{y}}}_{(n,1)} = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix}
$$

2.1.4 Regression equation in matrix form

$$
\frac{\hat{y}}{(n,1)} = \frac{\mathbf{X}}{(n,p)}\frac{b}{(p,1)} + \frac{b_0}{(n,1)}\\ \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{bmatrix} + \begin{bmatrix} b_0 \\ b_0 \\ \vdots \\ b_0 \end{bmatrix}
$$

2.2 Covariation, covariance, and correlation matrices

2.2.1 Covariation matrix P

We talked about the partitioned variation covariation matrix in general before

$$
\mathbf{P}_{XX,YY} = \mathbf{M}'\;\mathbf{M} - \frac{1}{n}\mathbf{M}'\;\mathbf{E}\;\mathbf{M} = \left[\begin{array}{c|c} \mathbf{P}_{XX} & \mathbf{P}_{XY} \\ \hline \mathbf{P}_{YX} & \mathbf{P}_{YY} \end{array}\right]
$$

2.2.2 Covariation matrix P

In linear regression, the variation covariation matrix becomes:

$$
\mathbf{P} = \left[\begin{array}{c|c|c} \mathbf{P}_{XX} & \mathbf{p}_{XY} \\ \hline \mathbf{p}_{YX} & SS_Y \\ \hline \mathbf{p}_{YX} & SS_Y \\ \hline \end{array} \right] = \left[\begin{array}{cccc} SS_{x1} & SP_{x1,x2} & \dots & SP_{x1,xp} & SP_{x1,y} \\ SP_{x2,x1} & SS_{x2} & \dots & SP_{x2,xp} & SP_{x2,y} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ SP_{xp,x1} & SP_{xp,x2} & \dots & SP_{y,xp} & SP_{xp,y} \\ \hline SP_{y,x1} & SP_{y,x2} & \dots & SP_{y,xp} & SS_y \\ \end{array} \right]
$$

2.2.3 Covariation matrix P

• P_{XX} : covariation matrix of the predictors

 $-p \times p$ matrix

- \underline{p}_{XY} : vector of covariations of each predictor with the outcome
 Y
	- $p \times 1$ vector
	- $-$ Its transpose, \underline{p}_{YX} , is a $1 \times p$ vector
- SS_Y : variation in the outcome
	- -1×1 or a scalar

2.2.4 Covariance matrix S

We talked about the partitioned variance covariance matrix in general before

$$
\mathbf{S}_{XX,YY} = \frac{1}{(n-1)} \left(\mathbf{M}' \ \mathbf{M} - \frac{1}{n} \mathbf{M}' \ \mathbf{E} \ \mathbf{M} \right) = \left[\frac{\mathbf{S}_{XX} \ \vert \ \mathbf{S}_{XY}}{\mathbf{S}_{YX} \ \vert \ \mathbf{S}_{YY}} \right]
$$

2.2.5 Covariance matrix S

In linear regression, the variance covariance matrix becomes:

$$
\mathbf{S} = \frac{1}{n-1} \ \mathbf{P} = \begin{bmatrix} \mathbf{S}_{XX} & s_{XY} \\ \frac{s_{XY}}{s_{YX}} & \frac{s_{XY}}{s_{y}^{2}} \end{bmatrix} = \begin{bmatrix} s_{x1}^{2} & s_{x1,x2} & \cdots & s_{x1,xp} & s_{x1,y} \\ s_{x2,x1} & s_{x2}^{2} & \cdots & s_{x2,xp} & s_{x2,y} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{s_{xp,x1} & s_{xp,x2} & \cdots & s_{xp}^{2} & s_{xp,y}}{s_{y,x2} & \cdots & s_{y,xp} & s_{y}^{2}} \end{bmatrix}
$$

2.2.6 Covariance matrix S

• \mathbf{S}_{XX} : covariance matrix of the predictors

 $- p \times p$ matrix

- S_{XY} : vector of covariances of each predictor with the outcome Y
	- $p \times 1$ vector
	- Its transpose, \underline{s}_{YX} , is a $1 \times p$ vector
- s_y^2 is the variance in the outcome

 $-$ 1 \times 1 or a scalar

2.2.7 Correlation matrix R

We talked about the partitioned correlation matrix in general before

$$
\mathbf{R}_{XX,YY}=\left[\begin{array}{c|c}\mathbf{R}_{XX} & \mathbf{R}_{XY}\\\hline \mathbf{R}_{YX} & \mathbf{R}_{YY}\end{array}\right]
$$

2.2.8 Correlation matrix R

In linear regression, the correlation matrix becomes:

$$
\mathbf{R} = \begin{bmatrix} \mathbf{R}_{XX} & r_{XY} \\ \frac{r_{XY}}{r_{XY}} & 1 \end{bmatrix} = \begin{bmatrix} 1 & r_{x1,x2} & \cdots & r_{x1,xp} & r_{x1,y} \\ r_{x2,x1} & 1 & \cdots & r_{x2,xp} & r_{x2,y} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{r_{xp,x1} & r_{xp,x2} & \cdots & 1 & r_{xp,y} \\ r_{y,x1} & r_{y,x2} & \cdots & r_{y,xp} & 1 \end{bmatrix}
$$

2.2.9 Correlation matrix R

• \mathbf{R}_{XX} : correlation matrix of the predictors

 $- p \times p$ matrix

• r_{XY} : vector of correlations of each predictor with the outcome Y

 $- p \times 1$ vector

- Its transpose, $r_{\rm yx}$, is a $1 \times p$ vector
- 1 (in the bottom right): correlation of the outcome with itself

 -1×1 or a scalar

3 Linear regression solution: Matrix!

3.1 Least squares solution

3.1.1 From last time…

Last time, we went through the **least squares solution** and the *normal equations* to solve for the regression coefficients in a model with a single predictor

$$
b_1 = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{n\Sigma X^2 - (\Sigma X)^2} = \frac{SP_{XY}}{SS_X} = \frac{s_{XY}}{s_X^2}
$$

The regression coefficient b_1 is equal to *either*:

- **Covariation** between X and Y , divided by **variation** of X
- **Covariance** between X and Y , divided by **variance** of X

3.2 Regression solution in matrix form

3.2.1 General solution for linear regression

In the non-matrix approach, we could solve for coefficients in terms of **covariation**, **covariance**, or **correlation** (standardized solution)

There are several equivalent **matrix formulations** for solving for regression coefficients

- 1. In terms of **covariation** (unstandardized solution)
- 2. In terms of the **covariance** (unstandardized solution)
- 3. In terms of the **correlation** (standardized solution)

3.2.2 General solution (in terms of covariation)

In matrix form, the solution for **unstandardized** coefficients is:

$$
\underline{b} = \mathbf{P}_{XX}^{-1} \, \underline{p}_{XY}
$$

• \underline{b} : vector of regression coefficients

 $-p \times 1$ vector – does **not** include the **intercept**

- \mathbf{P}_{XX}^{-1} : **inverse** of the **covariation** matrix of the predictors $-p \times p$ matrix, just like the covariation matrix
- \underline{p}_{XY} : vector of **covariations** of each predictor with the outcome Y $- p \times 1$ vector

3.2.3 General solution (in terms of covariance)

In matrix form, the solution for **unstandardized** coefficients is:

$$
\underline{b} = \mathbf{S}_{XX}^{-1} \underline{s}_{XY}
$$

• \underline{b} : vector of regression coefficients

 $-p \times 1$ vector – does **not** include the **intercept**

• S_{XX}^{-1} : **inverse** of the **covariance** matrix of the predictors

 $-p \times p$ matrix, just like the covariance matrix

- S_{XY} : vector of **covariances** of each predictor with the outcome Y
	- $p \times 1$ vector

3.2.4 Obtaining the intercept

• For the solutions based on the covariation or the covariance:

– Intercept is not included in the vector of regression coefficients

$$
b_0 = \overline{Y} - \underline{\overline{X}} \underline{b}
$$

$$
=\overline{Y}-(b_1\overline{X}_1+b_2\overline{X}_2+\cdots+b_p\overline{X}_p)
$$

3.2.5 General solution (in terms of correlation)

The matrix solution for **standardized** regression coefficients:

$$
\underline{b} = \mathbf{R}_{XX}^{-1} \; \underline{r}_{XY}
$$

• \underline{b} : vector of regression coefficients

 $-p \times 1$ vector – **no intercept for standardized solution**

• \mathbb{R}_{XX}^{-1} : **inverse** of the **correlation** matrix of the predictors

 $-p \times p$ matrix, just like the correlation matrix

• r_{XY} : vector of **correlations** of each predictor with the outcome Y

 $- p \times 1$ vector

3.3 Least squares solution with augmented data matrix

3.3.1 Least squares solution with augmented data matrix

An alternative form of the solution uses the **augmented data matrix**

$$
\mathbf{X}_A = \begin{bmatrix} 1 & X_{11} & X_{12} & \ldots & X_{1p} \\ 1 & X_{21} & X_{22} & \ldots & X_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \ldots & X_{np} \end{bmatrix}
$$

Note: I use X_A but there is no standard notation for raw data matrix vs augmented data matrix. Count the columns!

3.3.2 Regression with augmented data matrix

$$
\begin{aligned} \frac{\hat{y}}{(n,1)} &= \frac{\mathbf{X}_A}{(n,p+1)} \, \frac{b}{(p+1,1)} \\ \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} &= \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_p \end{bmatrix} \end{aligned}
$$

3.3.3 Augmented vector of regression coefficients

Adds the intercept (b_0) to the vector of regression coefficients

Vector of regression coefficients becomes: $\frac{b}{(p+1, 1)}$ = $\frac{1}{2}$ $\overline{}$ $\overline{}$ $\overline{}$ ⎣ $b_{\rm 0}$ b_1 $b₂$ ⋮ b_p

3.3.4 Augmented data matrix

Augmented data matrix (\mathbf{X}_A) has a column of 1s as the first column of the matrix The solution to OLS regression using the augmented data matrix:

$$
\underline{b} = \left(\mathbf{X}_A'\mathbf{X}_A\right)^{-1}\mathbf{X}_A'\; \underline{y}
$$

 \perp \perp \perp \perp ⎦

where \underline{b} is the
 $(p+1)\times 1$ matrix of regression coefficients

Remember: this version includes the intercept in the vector of coefficients

3.4 Hat matrix

3.4.1 Regression diagnostics

- Regression diagnostics are measures of the extent to which deviant cases affect the outcome of the regression analysis
	- **– Leverage**: Extreme cases in the predictor space
		- ∗ Most values between 1 and 10, but one person has a value of 20
	- **– Discrepancy**: Extreme cases in terms of residuals
		- ∗ How far is an observed point from its predicted value?
	- **– Influence**: Cases that change the coefficients
		- ∗ Need to have high leverage and high discrepancy

3.4.2 Regression diagnostics: Leverage

- There are several measures of **leverage** and some slight differences between them depending on the software package you're using
	- **–** They're all based on the **hat matrix**
	- The hat matrix is an $n \times n$ matrix
	- $-$ The values on the diagonal (one for each of the n subjects) are the **leverage** statistics

3.4.3 Hat matrix

- Using the augmented data matrix solution:
	- Predicted scores are given by: $\hat{y} = \mathbf{X}_A \underline{b}$
- From a few slides ago: $\underline{b} = (\mathbf{X}'_A \mathbf{X}_A)^{-1} \mathbf{X}'_A y$

Substitution:

$$
\hat{\underline{y}} = \mathbf{X}_A \left(\mathbf{X}_A' \mathbf{X}_A \right)^{-1} \mathbf{X}_A' \underline{y}
$$

3.4.4 Hat matrix

 $\hat{\mathbf{y}} = \mathbf{X}_A \left(\mathbf{X}_A' \mathbf{X}_A\right)^{-1} \mathbf{X}_A' \mathbf{y}$

- **Hat matrix**
	- **–** Everything highlighted in blue
	- **–** Everything on the right side before
- **Why is it called that???**
	- It's how you go from Y (observed) to \hat{Y} (predicted)
		- ∗ It puts the **hats** on the Ys