
Multivariate: Linear regression
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• Fully transition to matrix form for linear regression

• Describe matrix solution to least squares estimation
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2 Matrices in multiple regression

2.1 Matrices in multiple regression

2.1.1 Matrices in multiple regression

Data matrix

X
(𝑛, 𝑝) =

⎡
⎢⎢
⎣

𝑋11 𝑋12 … 𝑋1𝑝
𝑋21 𝑋22 … 𝑋2𝑝

⋮ ⋮ ⋱ ⋮
𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑝

⎤
⎥⎥
⎦

2.1.2 Matrices in multiple regression

Outcome variable

𝑦
(𝑛, 1) =

⎡
⎢⎢
⎣

𝑌1
𝑌2
⋮

𝑌𝑛

⎤
⎥⎥
⎦

2.1.3 Matrices in multiple regression

Predicted outcome variable

̂𝑦
(𝑛, 1) =

⎡
⎢
⎢
⎣

̂𝑌1
̂𝑌2
⋮
̂𝑌𝑛

⎤
⎥
⎥
⎦

2.1.4 Regression equation in matrix form

̂𝑦
(𝑛, 1) = X

(𝑛, 𝑝)
𝑏

(𝑝, 1) + 𝑏0
(𝑛, 1)

⎡
⎢
⎢
⎣

̂𝑌1
̂𝑌2
⋮
̂𝑌𝑛

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝑋11 𝑋12 … 𝑋1𝑝
𝑋21 𝑋22 … 𝑋2𝑝

⋮ ⋮ ⋱ ⋮
𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑝

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑝

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑏0
𝑏0
⋮

𝑏0

⎤
⎥⎥
⎦
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2.2 Covariation, covariance, and correlation matrices

2.2.1 Covariation matrix P

We talked about the partitioned variation covariation matrix in general before

P𝑋𝑋,𝑌 𝑌 = M′ M − 1
𝑛M′ E M = [ P𝑋𝑋 P𝑋𝑌

P𝑌 𝑋 P𝑌 𝑌
]

2.2.2 Covariation matrix P

In linear regression, the variation covariation matrix becomes:

P = [ P𝑋𝑋 𝑝𝑋𝑌
𝑝𝑌 𝑋 𝑆𝑆𝑌

] =
⎡
⎢
⎢
⎢
⎣

𝑆𝑆𝑥1 𝑆𝑃𝑥1,𝑥2 … 𝑆𝑃𝑥1,𝑥𝑝 𝑆𝑃𝑥1,𝑦
𝑆𝑃𝑥2,𝑥1 𝑆𝑆𝑥2 … 𝑆𝑃𝑥2,𝑥𝑝 𝑆𝑃𝑥2,𝑦

⋮ ⋮ ⋱ ⋮ ⋮
𝑆𝑃𝑥𝑝,𝑥1 𝑆𝑃𝑥𝑝,𝑥2 … 𝑆𝑆𝑥𝑝 𝑆𝑃𝑥𝑝,𝑦
𝑆𝑃𝑦,𝑥1 𝑆𝑃𝑦,𝑥2 … 𝑆𝑃𝑦,𝑥𝑝 𝑆𝑆𝑦

⎤
⎥
⎥
⎥
⎦

2.2.3 Covariation matrix P

• P𝑋𝑋: covariation matrix of the predictors

– 𝑝 × 𝑝 matrix

• 𝑝𝑋𝑌 : vector of covariations of each predictor with the outcome 𝑌
– 𝑝 × 1 vector
– Its transpose, 𝑝𝑌 𝑋, is a 1 × 𝑝 vector

• 𝑆𝑆𝑌 : variation in the outcome

– 1 × 1 or a scalar

2.2.4 Covariance matrix S

We talked about the partitioned variance covariance matrix in general before

S𝑋𝑋,𝑌 𝑌 = 1
(𝑛 − 1) (M′ M − 1

𝑛M′ E M) = [ S𝑋𝑋 S𝑋𝑌
S𝑌 𝑋 S𝑌 𝑌

]
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2.2.5 Covariance matrix S

In linear regression, the variance covariance matrix becomes:

S = 1
𝑛 − 1 P = [ S𝑋𝑋 𝑠𝑋𝑌

𝑠𝑌 𝑋 𝑠2
𝑦

] =
⎡
⎢
⎢
⎢
⎣

𝑠2
𝑥1 𝑠𝑥1,𝑥2 … 𝑠𝑥1,𝑥𝑝 𝑠𝑥1,𝑦

𝑠𝑥2,𝑥1 𝑠2
𝑥2 … 𝑠𝑥2,𝑥𝑝 𝑠𝑥2,𝑦

⋮ ⋮ ⋱ ⋮ ⋮
𝑠𝑥𝑝,𝑥1 𝑠𝑥𝑝,𝑥2 … 𝑠2

𝑥𝑝 𝑠𝑥𝑝,𝑦
𝑠𝑦,𝑥1 𝑠𝑦,𝑥2 … 𝑠𝑦,𝑥𝑝 𝑠2

𝑦

⎤
⎥
⎥
⎥
⎦

2.2.6 Covariance matrix S

• S𝑋𝑋: covariance matrix of the predictors

– 𝑝 × 𝑝 matrix

• 𝑠𝑋𝑌 : vector of covariances of each predictor with the outcome 𝑌
– 𝑝 × 1 vector
– Its transpose, 𝑠𝑌 𝑋, is a 1 × 𝑝 vector

• 𝑠2
𝑦 is the variance in the outcome

– 1 × 1 or a scalar

2.2.7 Correlation matrix R

We talked about the partitioned correlation matrix in general before

R𝑋𝑋,𝑌 𝑌 = [ R𝑋𝑋 R𝑋𝑌
R𝑌 𝑋 R𝑌 𝑌

]

2.2.8 Correlation matrix R

In linear regression, the correlation matrix becomes:

R = [ R𝑋𝑋 𝑟𝑋𝑌
𝑟𝑌 𝑋 1 ] =

⎡
⎢
⎢
⎢
⎣

1 𝑟𝑥1,𝑥2 … 𝑟𝑥1,𝑥𝑝 𝑟𝑥1,𝑦
𝑟𝑥2,𝑥1 1 … 𝑟𝑥2,𝑥𝑝 𝑟𝑥2,𝑦

⋮ ⋮ ⋱ ⋮ ⋮
𝑟𝑥𝑝,𝑥1 𝑟𝑥𝑝,𝑥2 … 1 𝑟𝑥𝑝,𝑦
𝑟𝑦,𝑥1 𝑟𝑦,𝑥2 … 𝑟𝑦,𝑥𝑝 1

⎤
⎥
⎥
⎥
⎦
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2.2.9 Correlation matrix R

• R𝑋𝑋: correlation matrix of the predictors

– 𝑝 × 𝑝 matrix

• 𝑟𝑋𝑌 : vector of correlations of each predictor with the outcome 𝑌
– 𝑝 × 1 vector
– Its transpose, 𝑟𝑌 𝑋, is a 1 × 𝑝 vector

• 1 (in the bottom right): correlation of the outcome with itself

– 1 × 1 or a scalar

3 Linear regression solution: Matrix!

3.1 Least squares solution

3.1.1 From last time…

Last time, we went through the least squares solution and the normal equations to solve
for the regression coefficients in a model with a single predictor

𝑏1 = 𝑛Σ𝑋𝑌 − (Σ𝑋)(Σ𝑌 )
𝑛Σ𝑋2 − (Σ𝑋)2 = 𝑆𝑃𝑋𝑌

𝑆𝑆𝑋
= 𝑠𝑋𝑌

𝑠2
𝑋

The regression coefficient 𝑏1 is equal to either:

• Covariation between 𝑋 and 𝑌 , divided by variation of 𝑋
• Covariance between 𝑋 and 𝑌 , divided by variance of 𝑋

3.2 Regression solution in matrix form

3.2.1 General solution for linear regression

In the non-matrix approach, we could solve for coefficients in terms of covariation, covari-
ance, or correlation (standardized solution)

There are several equivalent matrix formulations for solving for regression coefficients

1. In terms of covariation (unstandardized solution)
2. In terms of the covariance (unstandardized solution)
3. In terms of the correlation (standardized solution)

5



3.2.2 General solution (in terms of covariation)

In matrix form, the solution for unstandardized coefficients is:

𝑏 = P−1
𝑋𝑋 𝑝𝑋𝑌

• 𝑏: vector of regression coefficients

– 𝑝 × 1 vector – does not include the intercept

• P−1
𝑋𝑋: inverse of the covariation matrix of the predictors

– 𝑝 × 𝑝 matrix, just like the covariation matrix

• 𝑝𝑋𝑌 : vector of covariations of each predictor with the outcome 𝑌
– 𝑝 × 1 vector

3.2.3 General solution (in terms of covariance)

In matrix form, the solution for unstandardized coefficients is:

𝑏 = S−1
𝑋𝑋 𝑠𝑋𝑌

• 𝑏: vector of regression coefficients

– 𝑝 × 1 vector – does not include the intercept

• S−1
𝑋𝑋: inverse of the covariance matrix of the predictors

– 𝑝 × 𝑝 matrix, just like the covariance matrix

• 𝑠𝑋𝑌 : vector of covariances of each predictor with the outcome 𝑌
– 𝑝 × 1 vector

3.2.4 Obtaining the intercept

• For the solutions based on the covariation or the covariance:

– Intercept is not included in the vector of regression coefficients

𝑏0 = 𝑌 − 𝑋 𝑏

= 𝑌 − (𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝)
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3.2.5 General solution (in terms of correlation)

The matrix solution for standardized regression coefficients:

𝑏 = R−1
𝑋𝑋 𝑟𝑋𝑌

• 𝑏: vector of regression coefficients

– 𝑝 × 1 vector – no intercept for standardized solution

• R−1
𝑋𝑋: inverse of the correlation matrix of the predictors

– 𝑝 × 𝑝 matrix, just like the correlation matrix

• 𝑟𝑋𝑌 : vector of correlations of each predictor with the outcome 𝑌
– 𝑝 × 1 vector

3.3 Least squares solution with augmented data matrix

3.3.1 Least squares solution with augmented data matrix

An alternative form of the solution uses the augmented data matrix

X𝐴
(𝑛, 𝑝+1) =

⎡
⎢⎢
⎣

1 𝑋11 𝑋12 … 𝑋1𝑝
1 𝑋21 𝑋22 … 𝑋2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑝

⎤
⎥⎥
⎦

Note: I use X𝐴 but there is no standard notation for raw data matrix vs augmented data
matrix. Count the columns!

3.3.2 Regression with augmented data matrix

̂𝑦
(𝑛, 1) = X𝐴

(𝑛, 𝑝+1)
𝑏

(𝑝+1, 1)

⎡
⎢
⎢
⎣

̂𝑌1
̂𝑌2
⋮
̂𝑌𝑛

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

1 𝑋11 𝑋12 … 𝑋1𝑝
1 𝑋21 𝑋22 … 𝑋2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑝

⎤
⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
⋮

𝑏𝑝

⎤
⎥
⎥
⎥
⎦
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3.3.3 Augmented vector of regression coefficients

Adds the intercept (𝑏0) to the vector of regression coefficients

Vector of regression coefficients becomes: 𝑏
(𝑝+1, 1) =

⎡
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
⋮

𝑏𝑝

⎤
⎥
⎥
⎥
⎦

3.3.4 Augmented data matrix

Augmented data matrix (X𝐴) has a column of 1s as the first column of the matrix

The solution to OLS regression using the augmented data matrix:

𝑏 = (X′
𝐴X𝐴)−1

X′
𝐴 𝑦

where 𝑏 is the (𝑝 + 1) × 1 matrix of regression coefficients

Remember: this version includes the intercept in the vector of coefficients

3.4 Hat matrix

3.4.1 Regression diagnostics

• Regression diagnostics are measures of the extent to which deviant cases affect the out-
come of the regression analysis

– Leverage: Extreme cases in the predictor space
∗ Most 𝑋 values between 1 and 10, but one person has a value of 20

– Discrepancy: Extreme cases in terms of residuals
∗ How far is an observed point from its predicted value?

– Influence: Cases that change the coefficients
∗ Need to have high leverage and high discrepancy
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3.4.2 Regression diagnostics: Leverage

• There are several measures of leverage and some slight differences between them de-
pending on the software package you’re using

– They’re all based on the hat matrix

– The hat matrix is an 𝑛 × 𝑛 matrix

– The values on the diagonal (one for each of the 𝑛 subjects) are the leverage statis-
tics

3.4.3 Hat matrix

• Using the augmented data matrix solution:

– Predicted scores are given by: ̂𝑦 = X𝐴𝑏

• From a few slides ago: 𝑏 = (X′
𝐴X𝐴)−1

X′
𝐴 𝑦

Substitution:

̂𝑦 = X𝐴 (X′
𝐴X𝐴)−1

X′
𝐴 𝑦

3.4.4 Hat matrix

̂𝑦 = X𝐴 (X′
𝐴X𝐴)−1

X′
𝐴𝑦

• Hat matrix

– Everything highlighted in blue
– Everything on the right side before 𝑦

• Why is it called that???

– It’s how you go from 𝑌 (observed) to ̂𝑌 (predicted)

∗ It puts the hats on the 𝑌 s
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