
Multivariate: Logistic regression
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• My outcome variable isn’t normally distributed

– It’s binary!!!

– Two mutually exclusive categories

∗ yes/no, pass/fail, diagnosed/not, etc.

– Linear regression assumptions are violated

• Use logistic regression to analyze the outcome

– It’s an extension of linear regression, so many of the same concepts still apply

2 Linear regression and extensions

2.1 Review: Linear regression

2.1.1 Assumptions of linear regression

General linear model (GLM, linear regression, ANOVA) makes three assumptions about
the residuals (𝑒𝑖 = 𝑌𝑖 − ̂𝑌𝑖) of the model

1. Independence: observations (i.e., residuals) from different subjects do not depend
on one another

2. Constant variance (homoscedasticity): variance of residuals is same at all values
of predictor(s)

3. Conditional normality: residuals are normally distributed at each value of pre-
dictor(s)
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2.1.2 Linear regression on normal outcome

2.1.3 Assumptions met!

2.1.4 Assumptions met!

2.1.5 Assumptions met!
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2.2 Linear regression with a binary variable

2.2.1 A binary variable is not normal

2.2.2 Plot of data with fit line

2.2.3 Plot of data with fit line

2.2.4 Plot of residuals

2.2.5 Plot of residuals

−1

0

1

−2 −1 0 1 2
Theoretical

S
am

pl
e

11



−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2
x

.r
es

id

12



2.2.6 Plot of residuals

2.3 Next steps

2.3.1 What NOT to do

• Ignore the problem

– Do linear regression anyway
– Call it linear probability model

• Transform the outcome

– Square root, natural log, etc.
– May slightly normalize univariate residual distribution
– Does not fix heteroscedasticity, (conditional) non-normality

2.3.2 A binary variable is not normal
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2.3.3 What to do

The generalized linear model (GLiM)

• Not a single model but a family of regression models
• Choose features (e.g., residual distribution) to match the characteristics of your out-

come variable
• Accommodates many continuous and categorical outcome variables
• Includes logistic regression and Poisson regression

3 Logistic regression

3.1 Logistic regression

3.1.1 (Binary) logistic regression

• Outcome: binary

– Observed value (𝑌 ): 0 or 1, where 1 = “success” or “event”
– Predicted value ( ̂𝑌 ): Probability of success, between 0 and 1

• Residual distribution: binomial
• Link function: logit (or log-odds) = 𝑙𝑛( ̂𝑌

1− ̂𝑌 )

𝑙𝑛 (
̂𝑌

1 − ̂𝑌
) = 𝑙𝑛 ( ̂𝑝

1 − ̂𝑝) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝

3.1.2 Reminder: normal distribution

𝑓(𝑥) = 1√
2𝜋𝜎2 𝑒− (𝑥−𝜇)2

2𝜎2

Mean of normal distribution = 𝜇
Variance of normal distribution = 𝜎2

• Mean and variance are different parameters and are unrelated
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3.1.3 Binomial distribution

𝑃(𝑋 = 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

• 𝑛 is the sample size
• 𝑝 is the probability of an event

• 𝑘 is the observed number of events

• (𝑛
𝑘) = 𝑛!

𝑘!(𝑛−𝑘!) and is read as “𝑛 choose 𝑘”

3.1.4 Binomial distribution

What is the probability of having 𝑘 events in 𝑛 trials, each of which has probability 𝑝 of being
an “event”?

• 𝑝 = 0.5, 𝑛 = 10
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• 𝑝 = 0.1, 𝑛 = 10
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3.1.5 Binomial distribution

𝑃(𝑋 = 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

Mean of a binomial distribution: 𝑛𝑝
Variance of a binomial distribution: 𝑛𝑝(1 − 𝑝)

• Mean and variance are related to one another

– They are functions of the same parameters (𝑛 and 𝑝)

• Heteroscedasticity is built into logistic regression

3.1.6 Logistic regression: What we model

• Linear regression: Model the mean of the outcome (conditional on predictors(s))

• Logistic regression: Model the probability of a “success” or “event” (conditional
on predictor(s))
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– From the probability, we can also get the odds of a success and the logit or
log-odds of a success

3.1.7 Figure: What we model

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
x

y

3.1.8 Three forms of logistic regression

Probability:

̂𝑝 = 𝑒(𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝)

1 + 𝑒(𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝)

Odds:

̂𝑜𝑑𝑑𝑠 = ̂𝑝
1 − ̂𝑝 = 𝑒𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝

Logit:
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𝑙𝑛 ( ̂𝑝
1 − ̂𝑝) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝

3.2 Probability metric

3.2.1 What is probability (𝑝)?

• Likelihood of a “success” or “event”
• Ranges from 0 to 1
• Both options are equally likely when 𝑝 = 0.5

3.2.2 ̂𝑝 = 𝑒0.251+1.219𝑋
1+𝑒0.251+1.219𝑋
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3.2.3 ̂𝑝 = 𝑒0.251+1.219𝑋
1+𝑒0.251+1.219𝑋
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3.2.4 Probability metric interpretation: General

̂𝑝 = 𝑒0.251+1.219𝑋

1 + 𝑒0.251+1.219𝑋

General interpretation of intercept:

𝑏0 is related to the probability of success when X = 0

• 𝑏0 > 0: Success (1) more likely than failure (0) when X = 0
• 𝑏0 < 0: Failure (0) more likely than success (1) when X = 0

3.2.5 Probability metric interpretation: General

̂𝑝 = 𝑒0.251+1.219𝑋

1 + 𝑒0.251+1.219𝑋
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General interpretation of slope:

𝑏1 tells you how predictor X relates to probability of success

• 𝑏1 > 0: Probability of a success increases as X increases
• 𝑏1 < 0: Probability of a success decreases as X increases

3.2.6 Probability metric interpretation: Example

̂𝑝 = 𝑒0.251+1.219𝑋

1 + 𝑒0.251+1.219𝑋

Interpretation of example intercept:

• 𝑏0 > 0: Success (1) more likely than failure (0) when X = 0

• Probability of success when X = 0:
𝑒𝑏0

1+𝑒𝑏0 = 𝑒0.251
1+𝑒0.251 = 0.562

3.2.7 Probability metric interpretation: Example

̂𝑝 = 𝑒0.251+1.219𝑋

1 + 𝑒0.251+1.219𝑋

Interpretation of example slope:

• 𝑏1 > 0: Probability of a success increases as X increases
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3.2.8 P(success|X=0)
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3.2.9 Probability metric interpretation: Non-linear

• Linear regression:

– Constant, linear slope
– Slope depends on the slope only

• Logistic regression (probability):

– Non-linear slope
– Slope depends on BOTH slope (𝑏1) and predicted probability ( ̂𝑝)

∗ The slope of the tangent to the regression line at the predicted outcome
value = ̂𝑝(1 − ̂𝑝)𝑏1
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3.2.10 Probability metric interpretation: Non-linear

When 𝑋 = 1.5:

̂𝑃 (𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ̂𝑝 = 𝑒𝑏0+𝑏1𝑋

1 + 𝑒𝑏0+𝑏1𝑋 = 𝑒0.251+1.219×1.5

1 + 𝑒0.251+1.219×1.5 = 0.889

Approximate slope at that point is

̂𝑝(1 − ̂𝑝)𝑏1 = 0.889 × (1 − 0.889) × 1.219 = 0.12

3.2.11 Probability metric interpretation: Non-linear

X value Predicted probability Slope
-3 0.03 0.04
-2 0.10 0.11
-1 0.28 0.24
0 0.56 0.30
1 0.81 0.19
2 0.94 0.07
3 0.98 0.02

3.2.12 A caution about probability equation

 Warning

You might also see the probability defined as ̂𝑝 = 1
1+𝑒−(𝑏0+𝑏1𝑋)

Or more generally, ̂𝑝 = 1
1+𝑒−(𝑋𝑏)

• These are numerically equivalent to what we’ve talked about

– But did you notice the negative sign?
– No? You didn’t expect it and missed it in the complicated equation?
– Yeah, that’s why we don’t use this version
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3.3 Odds metric

3.3.1 What are odds?

Odds is the ratio of two probabilities

• Model the probability of a “success”
• Odds is the ratio of probability of a “success” ( ̂𝑝) to the probability of “not a success”

(1 − ̂𝑝)

𝑜𝑑𝑑𝑠 = ̂𝑝
(1 − ̂𝑝)

As probability of “success” increases (nonlinearly), the odds of “success” increases (also
nonlinearly, but in a different way)

3.3.2 How do odds work?

• Probability ranges from 0 to 1, switches at 0.5

– Success more likely than failure when 𝑝 > 0.5
– Success less likely than failure when 𝑝 < 0.5

• Odds range from 0 to +∞, switches at 1

– Success more likely than failure when 𝑜𝑑𝑑𝑠 > 1
– Success less likely than failure when 𝑜𝑑𝑑𝑠 < 1
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3.3.3 ̂𝑜𝑑𝑑𝑠 = 𝑝̂
(1−𝑝̂) = 𝑒0.251+1.219𝑋

0

10

20

30

−2 0 2
x

O
dd

s

3.3.4 Odds metric interpretation: General

̂𝑜𝑑𝑑𝑠 = ̂𝑝
(1 − ̂𝑝) = 𝑒0.251+1.219𝑋

General interpretation of intercept:
𝑏0 is related to the odds of success when 𝑋 = 0

• Odds of success when X = 0: 𝑒𝑏0

• 𝑏0 > 0: Odds of success > 1 when 𝑋 = 0

• 𝑏0 < 0: Odds of success < 1 when 𝑋 = 0

3.3.5 Odds metric interpretation: General

̂𝑜𝑑𝑑𝑠 = ̂𝑝
(1 − ̂𝑝) = 𝑒0.251+1.219𝑋
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General interpretation of slope:
𝑏1 = relationship between predictor 𝑋 and the odds of success

• 𝑏1 > 0: Odds of success increases as 𝑋 increases

• 𝑏1 < 0: Odds of a success decreases as 𝑋 increases

3.3.6 Odds metric interpretation: Example

̂𝑜𝑑𝑑𝑠 = ̂𝑝
(1 − ̂𝑝) = 𝑒0.251+1.219𝑋

Interpretation of example intercept:

• 𝑏0 > 0: Odds of success > 1 when 𝑋 = 0

– Success (1) more likely than failure (0) when 𝑋 = 0

• Odds of success when 𝑋 = 0: 𝑒𝑏0 = 𝑒0.251 = 1.29
– A “success” is about 1.29 times as likely as a “failure”
– Compare to 0.562 probability of success: 0.562 / 0.438 = 1.28

3.3.7 Odds metric interpretation: Example

̂𝑜𝑑𝑑𝑠 = ̂𝑝
(1 − ̂𝑝) = 𝑒0.251+1.219𝑋

Interpretation of example slope:

𝑏1 > 0: Odds of a success increases as 𝑋 increases
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3.3.8 Odds metric interpretation: Non-linear
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3.3.9 Odds metric interpretation: Non-linear

• This non-linear change is presented in terms of odds ratio

– Constant, multiplicative change in predicted odds
– For a 1-unit difference in 𝑋, the predicted odds of success is multiplied by the

odds ratio

• Example: odds ratio = 𝑒𝑏1 = 𝑒1.219 = 3.38

– For a 1-unit difference in 𝑋, the predicted odds of success is multiplied by 3.38

3.3.10 Odds metric interpretation: Non-linear

• Odds ratio = 𝑒𝑏1 = 𝑒1.219 = 3.38
• Odds ratio for 𝑋 = 1 versus 𝑋 = 0 : 𝑜𝑑𝑑𝑠(𝑋=1)

𝑜𝑑𝑑𝑠(𝑋=0) = 4.3492351
1.2853101 = 3.38

26



– Odds of success is 3.38 times larger when 𝑋 = 1 vs 𝑋 = 0

• Odds ratio for 𝑋 = 2 versus 𝑋 = 1 : 𝑜𝑑𝑑𝑠(𝑋=2)
𝑜𝑑𝑑𝑠(𝑋=1) = 14.7169516

4.3492351 = 3.38

– Odds of success is 3.38 times larger when 𝑋 = 2 vs 𝑋 = 1

• In fact, ANY 1 unit difference in 𝑋

• Constant multiplicative change

3.3.11 Odds metric figure again (odds ratio = 3.38)
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3.3.12 Odds metric interpretation: Non-linear

X value Predicted probability Predicted odds
-3 0.03 0.03
-2 0.10 0.11
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X value Predicted probability Predicted odds
-1 0.28 0.38
0 0.56 1.29
1 0.81 4.35
2 0.94 14.72
3 0.98 49.80

3.3.13 A caution about odds

 Warning

• Odds ratios are very popular in medicine and epidemiology
• They can be extremely misleading
• The same odds ratio corresponds to many different probability values

– Odds ratio = 𝑜𝑑𝑑𝑠=3
𝑜𝑑𝑑𝑠=1 = 3

∗ Corresponds to probability of 0.75 vs 0.5
– Odds ratio = 𝑜𝑑𝑑𝑠=9

𝑜𝑑𝑑𝑠=3 = 3
∗ Corresponds to probability of 0.90 vs 0.75

3.4 Logit or log-odds metric

3.4.1 What is the logit?

Logit or log-odds is the natural log (𝑙𝑛) of the odds

• As probability of “success” increases (nonlinearly, S-shaped curve)

– The odds of “success” increases (also nonlinearly, exponentially up)
– The logit of “success” increases linearly

3.4.2 How does the logit work?

• Probability ranges from 0 to 1, switches at 0.5

• Odds range from 0 to +∞ , switches at 1

• Logit ranges from −∞ to +∞, switches at 0

– Success more likely than failure when logit > 0
– Success less likely than failure when logit < 0
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3.4.3 ̂𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 ( 𝑝̂
(1−𝑝̂)) = 0.251 + 1.219𝑋
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3.4.4 Logit metric interpretation: General

̂𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 ( ̂𝑝
(1 − ̂𝑝)) = 0.251 + 1.219𝑋

General interpretation of intercept:
𝑏0 is related to the logit of success when X = 0

• Logit of success when X = 0: 𝑏0
• 𝑏0 > 0: Logit > 0 when X = 0
• 𝑏0 < 0: Logit < 0 when X = 0

3.4.5 Logit metric interpretation: General

̂𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 ( ̂𝑝
(1 − ̂𝑝)) = 0.251 + 1.219𝑋
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General interpretation of slope:
𝑏1 is the relationship between predictor X and logit of success

• 𝑏1 > 0: Logit of a success increases as X increases
• 𝑏1 < 0: Logit of a success decreases as X increases

3.4.6 Logit metric interpretation: Example

̂𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 ( ̂𝑝
(1 − ̂𝑝)) = 0.251 + 1.219𝑋

Interpretation of example intercept

• 𝑏0 > 0: Logit > 0 when X = 0
• Logit of success when X = 0: 𝑏0 = 0.251

3.4.7 Logit metric interpretation: Example

̂𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 ( ̂𝑝
(1 − ̂𝑝)) = 0.251 + 1.219𝑋

Interpretation of example slope

• 𝑏1 > 0: Logit of a success increases by 1.219 units when X increases by 1 unit

3.5 Metrics wrap-up

3.5.1 So which metric should I use?

They are equivalent, so use the metric that

• Makes the most sense to you
• You can explain fully
• Is most commonly used in your field
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3.5.2 Some things to keep in mind

• Odds ratios tell you about change, but not where you start

– If you report odds ratios, also report some measure of probability e.g., probability
of success at the mean of X

– 10x change is 5 to 50 or 0.05 to 0.5?

• Logit is nice because it’s linear, but it’s not very interpretable

– What is a “logit”? It’s just a mathematical concept that makes a straight line – not
actually meaningful

– But many psychology measures don’t have meaningful metrics…

3.5.3 Confidence intervals

Default results are in logit metric: compare to null value of 0

term estimate
(Intercept) 0.251
x 1.219

Confidence intervals are in logit metric: does it contain 0?

2.5 % 97.5 %
(Intercept) -0.188 0.703
x 0.661 1.876

3.5.4 Confidence intervals

𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 converts to odds ratio metric: compare to null value of 1

term estimate OR
(Intercept) 0.251 1.285
x 1.219 3.383

𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 converts to odds ratio metric: does it contain 1?
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2.5 % 97.5 % OR 2.5 % OR 97.5 %
(Intercept) -0.188 0.703 0.829 2.019
x 0.661 1.876 1.938 6.528

3.6 A tiny detour

3.6.1 Three alternatives / extensions

• What if I want to focus more on probability (and don’t care about odds ratios)?

– Probit regression: based on the cumulative normal distribution, not the logistic
distribution

• What if I have three or more options for my outcome?

– Categories have an order to them: Ordinal logistic regression
– Categories have no order to them: Multinomial logistic regression

4 Estimation and model fit

4.1 Estimation

4.1.1 You ran a model: What now?

Usually two things you want to do with it

• Compute some measure of predictive power or model fit

– 𝑅2
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 or similar

• Compare that model to another competing model

– Which model is better?
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4.1.2 Model estimation

Linear regression is estimated using ordinary least squares (OLS)

• Produces sums of squares (𝑆𝑆)
• Measures like 𝑅2 are a function of 𝑆𝑆

GLiMs (like logistic regression) are estimated using maximum likelihood

• No sums of squares
• Instead: Deviance, which is a function of the log-likelihood

4.1.3 What is deviance?

• Conceptually similar to 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

• If you had 𝑛 predictors

– One predictor per person
– Perfectly predict the outcome values
– “Perfect” model

• Deviance is how far from this “perfect” model you are

– This is “badness” of fit

4.2 𝑅2 measures

4.2.1 𝑅2 in linear regression

• 𝑅2 for linear regression has many desirable qualities

– Always ranges from 0 to 1
– Always stays the same or increases with more predictors (never decreases)

Without 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, what can we do?
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4.2.2 𝑅2 analogues

• There are some general measures that work for all GLiMs and some more specific
measures that only work for logistic regression

 Warning

𝑅2 analogues don’t have the properties that 𝑅2 in linear regression does

• Can be less than 0 or greater than 1
• Can decrease when you add predictors

4.2.3 Pseudo-𝑅2 or 𝑅2
𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑅2
𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 1 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡.𝑜𝑛𝑙𝑦.𝑚𝑜𝑑𝑒𝑙

• Compare your model to a model with no predictor (only intercept)

– Common for many types of advanced modeling, could do it for linear regression but
probably never would

– Essentially tests how much closer the model is to the “perfect” model than the
intercept only model

– Theoretically bounded by 0 and 1, but in practice…

4.2.4 𝑅2
𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛

𝑅2
𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛 = 1 − 𝐿𝐿𝑚𝑜𝑑𝑒𝑙

𝐿𝐿𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡.𝑜𝑛𝑙𝑦.𝑚𝑜𝑑𝑒𝑙

• Same idea as 𝑅2
𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒, just using LL instead of deviance

– Theoretically bounded by 0 and 1
– Relatively independent of base rate

∗ Base rate is the overall probability of a success in the sample
∗ See DeMaris (2002) for more details about logistic regression specific measures
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4.2.5 𝑅2 as correlation between observed and predicted values

• In linear regression, 𝑅2
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 is also the squared correlation between the observed 𝑌

values and the predicted 𝑌 values

• Most software packages can produce predicted 𝑌 values for your analysis

– Save predicted values to the dataset
– Correlate observed and predicted 𝑌 values (squared correlation)

4.3 Model comparisons

4.3.1 Model comparisons

• In linear regression, if you added a predictor, there were two ways to tell if that
predictor was adding to the model:

– Test of the regression coefficient (i.e., Wald test: 𝑡-test or 𝑧-test)
– 𝑅2

𝑐ℎ𝑎𝑛𝑔𝑒 for added prediction (with its 𝐹 -test)

• For logistic regression, Wald test of the regression coefficient may not be
reliable (see Vaeth, 1985)

– Need to use some analogue of the significance test for 𝑅2
𝑐ℎ𝑎𝑛𝑔𝑒

4.3.2 Likelihood ratio (LR) test

• Ratio of likelihoods

– Specifically, a function of likelihood from ML estimation
– Even more specifically, −2 × 𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
– −2 × 𝐿𝐿 is the deviance

• Test statistic

– 𝜒2 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙1 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙2
– How did we get from ratio to difference?

∗ Division in log metric is subtraction in regular metric
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4.3.3 Likelihood ratio (LR) test

𝜒2 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙1 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙2

• Model 1: simpler model (fewer predictors, worse fit)

• Model 2: more complex model (more predictors, better fit)

• Degrees of freedom = difference in number of parameters

– Significant test: Model 1 is significantly worse than Model 2
– NS test: Model 1 and 2 are not significantly different, so go with simpler one

(Model 1)

4.3.4 LR test: Example

• Logistic regression example: Deviance = 116.146
• Logistic regression model with no predictors (intercept only): Deviance = 137.989
• 𝜒2(1) = 137.989 − 116.146 = 21.843

– Critical value for 𝜒2 with 1 df and 𝛼 = 0.05 is 3.841
– The test is significant: 21.843 > 3.841

∗ Model 2 is better than Model 1
∗ The predictor is significant

5 Summary

5.1 Summary

5.1.1 Summary

• Use logistic regression when your outcome is binary

– Don’t use linear regression

• Be careful with interpretation no matter what

– Probability: Probability makes sense, but it’s nonlinear
– Odds: Odds ratio seems to make sense but it can be misleading
– Logit: Linear but what even is a logit?

• But many basic concepts parallel linear regression
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– Intercept, slope(s), linear combination, 𝑅2
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒

5.1.2 In class

• We will

– Run some logistic regression models
– Interpret the results
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