
Multivariate: Poisson regression
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• My outcome variable isn’t normally distributed
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– It’s a count of how often something happened!!!

– Probably right skewed (among other things)

– May also have a lot of zeroes

• Use Poisson regression (or a related model) to analyze the outcome

– It’s an extension of linear regression

– Many of the same concepts still apply

2 Counts and frequencies

2.1 Count outcomes

2.1.1 Count outcomes

• Easy to miss that linear regression assumptions are violated

• Count variables are

– Discrete: only take on whole number (integer) values

– Lower bound of 0

– Typically right skewed
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2.1.2 Figure: histogram of count
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2.1.3 Figure: count as outcome
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2.1.4 GLM with count outcomes

• Count outcomes violate assumptions of GLM (regression and ANOVA)

– Residuals are not conditionally normally distributed
– Residuals do not have a constant variance (heteroscedasticity)

• GLM also results in out-of-bound (i.e., less than 0) predicted values
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2.1.5 Figure: using GLM, out-of-bounds prediction
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2.1.6 Figure: using GLM, histogram of count residuals
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2.1.7 Figure: Using GLM, X versus count residuals
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3 Poisson regression

3.1 Model

3.1.1 Poisson regression

• Outcome: count in a fixed period of time

– Integer (whole number) values greater than or equal to 0

• Residuals: Poisson distribution

• Link function: natural log (𝑙𝑛)
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3.1.2 Poisson distribution

• Named after Simeon Denis Poisson (1781 - 1840)

• I had to delete the pictures because they were too large

– Jim Morrison
– Jim Morrison’s grave
– Pere Lachaise cemetery sign
– Pere Lachaise cemetery

3.1.3 Poisson distribution

• Number of times a low probability event happens

– Number of soldiers killed by horse-kicks each year in each corps in the Prussian
cavalry (Bortkiewicz)

– Number of yeast cells used when brewing Guinness beer (Gosset, “Student” of
“Student’s 𝑡”)

– Number of typographical errors on each page of a book
– Number of bombs falling in London in each square block
– Number of earthquakes per day in Southern California

3.1.4 Poisson distribution

𝑃(𝑋 = 𝑘) = 𝜆𝑘

𝑘! 𝑒−𝜆

• Poisson distribution properties:

– Mean of a Poisson distribution = 𝜆

– Variance of a Poisson distribution = 𝜆

– Discrete distribution, so only defined for integers
– Undefined below zero
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3.1.5 Figure: mean = variance = 1
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3.1.6 Figure: mean = variance = 4
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3.1.7 Figure: mean = variance = 7
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3.1.8 Figure: mean = variance = 10
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3.1.9 Poisson regression

• Outcome: count in a fixed period of time

– Integer (whole number) values greater than or equal to 0

• Residuals: Poisson distribution

– Heteroscedasticity is a feature of Poisson distribution
– Mean and variance are related

• Link function: natural log (𝑙𝑛)

– ln is only defined for positive values, so no predicted values < 0
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3.1.10 Figure: Poisson regression graphically
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3.1.11 Figure: Poisson regression graphically
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3.2 Interpretation

3.2.1 Two forms of Poisson regression

• In terms of the predicted count, ̂𝜇:

̂𝑌 = ̂𝜇 = 𝑒𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝

• In terms of the natural log of the predicted count, 𝑙𝑛( ̂𝜇):

𝑙𝑛( ̂𝑌 ) = 𝑙𝑛( ̂𝜇) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝

• Poisson regression is sometimes called the log-linear model because the log (i.e., 𝑙𝑛)
form is a straight line
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3.2.2 Count metric interpretation: ̂𝜇 = 𝑒0.466+0.925𝑋
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3.2.3 Count metric interpretation

• Intercept:

– 𝑒𝑏0 is the predicted count when 𝑋 = 0

• Slope:

– 𝑒𝑏1 is the multiplicative effect of 𝑋 on the predicted count

∗ For a 1 unit increase in 𝑋, the predicted count is multiplied by 𝑒𝑏1

∗ This is sometimes called the rate ratio (RR)

3.2.4 Count metric interpretation

• 𝑒𝑏0 = 𝑒0.4659581 = 1.594
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– Predicted count when 𝑋 = 0

• 𝑒𝑏1 = 𝑒0.9247665 = 2.521

– Multiplicative effect of 𝑋 on the predicted count
– For a 1 unit increase in 𝑋, the predicted count is multiplied by 2.521

3.2.5 Count metric interpretation

X Predicted count
-2 0.251
-1 0.632
0 1.594
1 4.018
2 10.130

3.2.6 Log of predicted count metric interpretation 𝑙𝑛( ̂𝜇) = 0.466 + 0.925𝑋

• Intercept:

– 𝑏0 is the 𝑙𝑛( ̂𝜇) when 𝑋 = 0

• Slope:

– 𝑏1 is the additive effect of 𝑋 on the 𝑙𝑛( ̂𝜇)

3.2.7 Log of predicted count metric interpretation

• 𝑏0 = 0.466

– 𝑙𝑛( ̂𝜇) when 𝑋 = 0

• 𝑏1 = 0.9248

– Additive effect of 𝑥 on the 𝑙𝑛( ̂𝜇)
– For a 1 unit increase in 𝑋, the 𝑙𝑛( ̂𝜇) increases by 0.9248
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3.2.8 Log of predicted count metric interpretation

X Predicted count ln(Predicted count)
-2 0.251 -1.384
-1 0.632 -0.459
0 1.594 0.466
1 4.018 1.391
2 10.130 2.315

3.2.9 Confidence intervals

• Results from software are in 𝑙𝑛( ̂𝜇) metric (linear metric)

b Lower CL Upper CL
(Intercept) 0.466 0.277 0.643
x 0.925 0.806 1.047

• To get predicted count metric, exponentiate each value (𝑒𝑏)

exp.b. Lower.CL Upper.CL
(Intercept) 1.594 1.320 1.902
x 2.521 2.239 2.848

4 Overdispersion

4.1 Overdispersion

4.1.1 Equidispersion

• Remember the Poisson distribution:

– Mean = Variance = 𝜆
– This is called equidispersion
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4.1.2 Overdispersion

• In Poisson regression, equidispersion means that the (conditional) mean and (condi-
tional) variance of 𝑌 are equal

– In practice, the actual variance of 𝑌 is typically larger than expected by the Poisson
distribution

– This is called overdispersion
– (Can technically be smaller, uncommon, underdispersion)

4.1.3 Overdispersion

• Why does overdispersion happen?

– Sometimes, just because
– Due to omitted predictors
– “Excess” zeroes

4.1.4 Overdispersion

• Why do we care about overdispersion?

– The variance estimated in the model (𝜆) helps determine the standard errors for
regression coefficients

– It also plays a role in calculating deviance
– If the variance in our data is larger than 𝜆, we are using the wrong

standard errors and the deviance is wrong
∗ Test of significance, pseudo-𝑅2, model comparisons are wrong

4.1.5 What do we do?

• There are two main alternative models for overdispersion

– Overdispersed Poisson regression
– Negative binomial regression

• Both handle overdispersion, but in slightly different ways

18



4.2 Overdispersed Poisson regression

4.2.1 Overdispersed (or quasi-) Poisson regression

• The simplest way to deal with overdispersion is to include a “fudge factor” to account
for overdispersion

– The variance is larger than the model says, so we just multiply it by something to
make it larger

• The fudge factor is provided by the scale parameter (𝜓)

– If equidispersion holds, 𝜓 = 1
– If there is overdispersion, 𝜓 > 1
– (𝜓 will show up in your output, no need to calculate)

4.2.2 Overdispersed (or quasi-) Poisson regression

• Compared to Poisson regression:

– Each standard error in the OD Poisson model is multiplied by
√𝜓

– If 𝜓 > 1, this will make the standard errors larger

• Software

– SPSS: Scale value in output is 𝜓

– R: Scale value in output is 𝜓
– SAS: Scale value in output is

√𝜓

4.2.3 Estimating the scale parameter

• The scale parameter can be estimated in two similar ways

– Pearson 𝜒2: 𝜓 = 𝜒2
𝑃𝑒𝑎𝑟𝑠𝑜𝑛

𝑑𝑓

– Deviance: 𝜓 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒
𝑑𝑓

• The results are typically very close, but Pearson is preferred
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4.2.4 Overdispersed Poisson regression interpretation

• Interpretation for the overdispersed Poisson regression model is identical to interpreta-
tion for the Poisson regression model

– Interpret coefficients the same
∗ Predicted count metric or log of predicted count metric

• Regression coefficients same as coefficients from Poisson regression

– Only standard errors (and therefore potentially significance) will change

4.2.5 Comparison

• Poisson regression:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.466 0.093 5.000 0
x 0.925 0.061 15.063 0

• Overdispersed Poisson regression (from R, 𝜓 = 2.45):

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.466 0.146 3.196 0.002
x 0.925 0.096 9.628 0.000

4.3 Negative binomial regression

4.3.1 Negative binomial distribution

• Related to Poisson distribution

– But that’s really not obvious
– Mixture of Poisson and gamma distributions
– Addition of gamma adds in extra variance to make variance > mean

𝑃(𝑋 = 𝑘) = ((𝑘 − 𝑟 − 1)
𝑘 )(1 − 𝑝)𝑟𝑝𝑘
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4.3.2 Negative binomial in words 1

Poisson regression assumes that every person with the same predictor value(s) comes
from the same Poisson distribution

• Person A with 𝑋 = 1: 𝑌 from Poisson distribution w mean = 𝑒𝑏0+𝑏1(1)

• Person B with 𝑋 = 1: 𝑌 from Poisson distribution w mean = 𝑒𝑏0+𝑏1(1)

• Person C with 𝑋 = 1: 𝑌 from Poisson distribution w mean = 𝑒𝑏0+𝑏1(1)

But what if there’s actually more variability among subjects than captured by the predictors?
(i.e., overdispersion)

• For example, what if we have omitted a predictor?

4.3.3 Negative binomial in words 2

Negative binomial regression allows people with the same predictor value(s) to come
from different Poisson distributions

• Person A with 𝑋 = 1: 𝑌 from one Poisson distribution
• Person B with 𝑋 = 1: 𝑌 from another Poisson distribution
• Person C with 𝑋 = 1: 𝑌 from yet another Poisson distribution

The means of the Poisson distributions follow a gamma distribution

• The average of those distributions is the same as Poisson regression
• But variability of several different Poisson distributions > variability of single Poisson

distribution
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4.3.4 Person A: 𝑌 from Poisson distribution with 𝜆 = 1
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4.3.5 Person B: 𝑌 from Poisson distribution with 𝜆 = 4
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4.3.6 Person C: 𝑌 from Poisson distribution with 𝜆 = 7
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4.3.7 Negative binomial distribution
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4.3.8 Negative binomial distribution
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4.3.9 Negative binomial distribution
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4.3.10 Negative binomial scale parameter

• Negative binomial regression estimates a different scale parameter

– Usually called 𝛼 (SPSS, SAS, STATA)
– Sometimes called 𝜃 which is 1/𝛼 (R)

4.3.11 Negative binomial scale parameter

• Conditional residual distribution based on negative binomial

– Mean = 𝜇
– Variance = 𝜇 + 𝛼𝜇2

∗ If there is overdispersion, 𝛼 > 0
∗ If there is not, 𝛼 = 0 and this reduces to Poisson

• Standard errors don’t need to be adjusted
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– They are calculated using variance = 𝜇 + 𝛼𝜇2 to begin with

4.3.12 Negative binomial regression interpretation

• Interpretation for the negative binomial regression model is identical to interpretation
for the Poisson regression model

– Interpret coefficients the same
∗ Predicted count metric or log of predicted count metric

• Regression coefficients for negative binomial will be different

– Now that the model isn’t constrained to “mean = variance” anymore, the mean
may shift

∗ Regression coefficients change
∗ Standard errors will also change

4.3.13 Comparison

Poisson regression:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.466 0.093 5.000 0
x 0.925 0.061 15.063 0

Negative binomial regression (𝛼 = 0.49):

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.501 0.122 4.123 0
x 0.880 0.101 8.719 0
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4.3.14 Figure: comparison (blue = Poisson, red = NB)
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5 Miscellaneous

5.1 Choosing a model

5.1.1 Which model to pick?

• Poisson regression

– You will likely never satisfy the equidispersion assumption

• Overdispersed Poisson regression

– Preferred to Poisson regression
– Appropriate standard errors and relatively simple model

• Negative binomial regression

– More complex, but better able to reproduce the observed counts
– This may be preferred if you’re interested in prediction
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5.1.2 A word of caution…

Berk & MacDonald (2008)

If apparent overdispersion results from specification errors in the systematic part of
the Poisson regression model, resorting to the negative binomial distribution does
not help. It can make things worse by giving a false sense of security when the
fundamental errors in the model remain.

• In other words, negative binomial regression doesn’t fix a bad model

5.1.3 Variable lengths of time

• Poisson regression and variants assume a fixed length of time

– number of aggressive acts committed by a child in 1 hour
– number of cigarettes smoked per day

• Often, we measure a count over some variable period of time

5.1.4 Variable lengths of time

• Can extend Poisson type models to variable time periods

– Include natural log of the measurement interval as a predictor with regression coef-
ficient equal to 1:

∗ 𝑙𝑛( ̂𝜇) = 𝑙𝑛(𝑡𝑖𝑚𝑒) + 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝
– In software: include time (specifically, ln(time)) as an “offset”

5.2 Too many or too few zeroes

5.2.1 Zeroes can be really important

• Conceptually, zeroes are meaningful

– Lowest possible value of a count
– Indicate “nothing”
– Two situations:

∗ Too few zeroes (relative to a Poisson distribution)
∗ Too many zeroes (relative to a Poisson distribution)

30



5.2.2 Too few zeroes

• Sometimes you have a study where the outcome is a count, but it cannot take on a
value of 0

– Study of medical visits

∗ Have to visit the doctor to get involved in the study

– Study of substance use

∗ Only interested in substance users

• Truncated Poisson regression model uses a truncated Poisson distribution that removes
the probability of zeroes

5.2.3 Excess zeroes

• Counts often display “excess” zeroes

– More values of 0 than expected for a Poisson distribution

• Even if the rest of the distribution is approximately Poisson, the ”excess” zeroes lead to
overdispersion

– Sometimes, what looks like overdispersion is really excess zeroes

• There are specific Poisson family models to appropriately deal with excess zeroes, de-
pending on why the zeroes are there

5.2.4 Why are there all these zeroes?

• This is a substantive question

– You need to know about the outcome you’re studying

• Question: Do the people who are responding zero have some probability of re-
sponding otherwise?
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5.2.5 Do they have some probability of responding other than 0?

• Yes → zero-inflated Poisson regression

– Cigarettes smoked for smoker who hasn’t smoked yet today
– Alcohol consumed for someone who hasn’t had any yet today

• No → hurdle regression or with-zeroes regression

– Cigarettes smoked: nonsmoker always responds 0
– Alcoholic drinks consumed: abstainer always responds 0
– (These are called “structural zeroes”)

5.2.6 Zero-inflated Poisson regression

• There are zeroes have some probability to be non-zero

• Two parts modeled simultaneously:

– Logistic regression: is each zero structural or not?
– Poisson regression: non-structural zeroes and positive values

• Can use same set of predictors in both parts, but do not have to

• Can also model non-structural zeroes and positive values using overdispersed
Poisson regression or negative binomial regression

5.2.7 Hurdle regression or with-zeroes regression

• There are zeroes that have no probability of being non-zero

– Two different populations: smokers and nonsmokers, drinkers and nondrinkers

• Two parts modeled simultaneously:

– Logistic regression: whether zero or not
– Truncated Poisson regression: positive values only

• Can use same set of predictors in both parts, but do not have to

• Can also model positive values using truncated overdispersed Poisson regression
or truncated negative binomial regression

32



5.3 Evaluation and comparison

5.3.1 Pseudo-𝑅2 values

𝑅2 = 1 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙
𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑚𝑜𝑑𝑒𝑙

• Theoretically bounded by 0 and 1

• Recommended for count models

• Also recommended: correlation between 𝑌 and ̂𝑌

NOTE: for count models, use deviance not -2LL

5.3.2 Likelihood ratio tests

𝜒2 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙1 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑒𝑙2

• Model 1: simpler model (fewer predictors, worse fit)

• Model 2: more complex model (more predictors, better fit)

• Degrees of freedom = difference in number of parameters

– Significant test: Model 1 is significantly worse than Model 2
– NS test: Model 1 and 2 are not significantly different, so go with simpler one

(Model 1)

NOTE: for count models, use deviance not -2LL

5.4 Nested models

5.4.1 Nested models

• Two models are nested if

– All terms in one are included in the other
– You can get from one to the other by fixing some paths to a value

• Why do we care?

– Likelihood ratio tests can only be used to compare nested models
∗ If your models are not nested, you cannot use the likelihood ratio tests to

compare them
– Instead, use AIC or BIC (smaller is better)
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5.4.2 Nested models

1. Linear regression with predictor 𝑋1
2. Linear regression with predictors 𝑋1 and 𝑋2

• Model 1 is nested within model 2

– Fix the regression path for 𝑋2 to 0 and Model 2 becomes Model 1

5.4.3 Nested models

3. Poisson regression with predictors 𝑋3 and 𝑋4
4. Overdispersed Poisson regression w/ predictors 𝑋3 and 𝑋4

• Model 3 is nested within model 4
• Note that this is a test of the dispersion parameter, 𝜓

5.4.4 Complicated nesting situations 1

5. Overdispersed Poisson regression w/ predictor 𝑋5
6. Overdispersed Poisson regression w/ predictors 𝑋5 and 𝑋6

• Model 5 is NOT nested within model 6

• In addition to the extra predictor (𝑋6), the overdispersion parameter is not the same in
these models

– Model 5 has a 𝜓 parameter based on only 𝑋5
– Model 6 has a different 𝜓 parameter based on both 𝑋5 and 𝑋6
– You can’t get from Model 6 to Model 5 by fixing a parameter to 0

5.4.5 Complicated nesting situations 2

7. Overdispersed Poisson regression w/ predictors 𝑋7 and 𝑋8
8. Negative binomial regression w/ predictors 𝑋7 and 𝑋8

• Model 7 is NOT nested within model 8

• The overdispersion parameters are completely different for the two models

– Model 7 has a 𝜓 parameter and variance = 𝜓𝜇
– Model 8 has a 𝛼 parameter and estimates variance = 𝜇 + 𝛼𝜇2
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5.5 Conclusion

5.5.1 Summary

• When your outcome is a count, use a model from the Poisson regression family

– Nonlinear, exponential model or log-linear model
– Overdispersion: overdispersed Poisson or negative binomial
– Too many or too few zeroes

5.5.2 In class exercises

• Use the same data as last time

– Original count outcome of number of drinks, not binge

• Run a variety of count models

– Poisson, overdispersed Poisson, negative binomial

35


	Goals
	Goals

	Counts and frequencies
	Count outcomes

	Poisson regression
	Model
	Interpretation

	Overdispersion
	Overdispersion
	Overdispersed Poisson regression
	Negative binomial regression

	Miscellaneous
	Choosing a model
	Too many or too few zeroes
	Evaluation and comparison
	Nested models
	Conclusion


