Multivariate: Principal components analysis

Table of contents

1	Goals 1.1 Goals	2 2								
2	Statistical measurement	2								
	2.1 Statistical measurement	2								
3	Super quick review	4								
	3.1 Eigenvectors and eigenvalues	4								
4	Data Example	5								
	4.1 Measure and variables	5								
	4.2 Output of the analysis	6								
5	PCA details	12								
	5.1 PCA process	12								
6	How many components?	15								
	6.1 How many components?	15								
	6.2 Scree plot	16								
	6.3 Kaiser criteria	17								
	6.4 Proportion of variance	18								
	6.5 Parallel analysis	18								
	6.6 MAP	21								
	6.7 Solution makes sense	23								
	6.8 Summary of number of components	23								
7	Rotation 24									
	7.1 Simple structure	24								
	7.2 Orthogonal and oblique rotation	25								

8	Conclusion									
	8.1	Summary of this week	26							
	8.2	Next week	27							

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- Principal components analysis (PCA)
 - **Dimension reduction**: reduce number of variables
- A large set of (potentially correlated) observed variables
 - Organize the variance in those variables to a smaller set of orthogonal (uncorrelated) variables

2 Statistical measurement

2.1 Statistical measurement

2.1.1 Measuring things is hard

- Psychology: we cannot directly measure some constructs
 - No ruler to measure "intelligence" or "introversion"
- We can **indirectly** measure what we really want to measure
 - Want to measure **intelligence**
 - * Math ability, verbal ability, spatial ability, reasoning, general knowledge, etc.
 - Intelligence is a **latent variable**
 - * Not *directly* observed

2.1.2 Two ways to think about latent variables

- 1. Latent variable is a **result** of item responses
 - *Formative* latent variable
 - Principal components analysis (PCA)
 - This week
- 2. Latent variable **causes** item responses
 - *Reflective* latent variable
 - Factor analysis (FA)
 - Next week (and most of what you'll do)

2.1.3 Formative vs reflective latent variables

• Formative factor

• Reflective factor

2.1.4 Latent variables as dimension reduction

- In each of these examples
 - 3 observed variables and 1 latent variable
- But you can have many more observed variables
 - As many measures of the latent variable as you have
- Often more than 1 latent variable
 - Number of latent variables < number of observed variables
 - * Dimension reduction

3 Super quick review

3.1 Eigenvectors and eigenvalues

3.1.1 Eigenvectors and eigenvalues

- Eigenvectors / values are the solution to homogenous equations
 - $[\mathbf{A} \lambda \mathbf{I}]\nu = 0$
 - $-\lambda$ (lambda) is the eigenvalues, ν (nu) is the eigenvectors
- Maximize a function while also imposing some constraints
 - In the case of PCA
 - Maximize the variance (1st eigenvalue is largest)
 - Constrain eigenvectors to be orthogonal

3.1.2 Eigenvectors

- Eigenvectors are created from a matrix (such as \mathbf{R}_{XX})
 - Form basis or reference axes for that matrix
 - All mutually orthogonal
- If matrix is full rank
 - As many eigenvectors as variables (from a corr or cov matrix)
 - * p variables means p eigenvalues and eigenvectors
 - * 5 variables means 5 eigenvalues and eigenvectors

3.1.3 Eigenvalues

- One eigenvalue for each eigenvector
 - How much **variance** associated with that eigenvector
 - First eigenvector has the highest eigenvalue, then decreases
- Sum of eigenvalues for a matrix = sum of diagonal elements
 - 5 × 5 correlation matrix \rightarrow eigenvalues add to 5

4 Data Example

4.1 Measure and variables

4.1.1 Simulated data

- Data from last week's class
 - -100 subjects
 - 6 continuous variables
- Color-coded correlation matrix

4.1.2 Observed and latent variables

- Observed variables
 - 6 variables
 - These are all X variables: they predict the latent variable
- Latent variables
 - These are the Y variables
 - They are the **components** (PCA)
 - We create them in the analysis

4.2 Output of the analysis

4.2.1 Data reduction

• The idea behind PCA is to reduce the number of variables

- Start with 6 items
 - * Want **fewer** than 6 components
 - * How many fewer?
- I simulated the data to have 2 "clumps"
 - We talked about this last week
 - So I'll show you a ${\bf 2}$ component model to start

4.2.2 PCA results

- 1. Loadings
 - Relation between observed variable (X) and component (Y)
 - Matrix with rows = # items, columns = # components
 - High loading = that X is highly related to that Y
 - Think: correlation or standardized regression coefficient
 - Range from -1 to 1

4.2.3 Model results: Loadings in R

Loadings:

PC1PC2x10.739-0.425x20.779-0.468x30.488-0.623x40.5520.577x50.5460.714x60.5140.534

PC1 PC2 SS loadings 2.257 1.914 Proportion Var 0.376 0.319 Cumulative Var 0.376 0.695

Component Matrix ^a							
	Comp	onent					
	1	2					
x1	.739	425					
x2	.779	468					
x3	.488	623					
x4	.552	.577					
x5	.546	.714					
x6	.514	.534					
Extraction Method: Principal							
Component Analysis.							
a. 2 com	a. 2 components extracted.						

		Tota	al Variance Expl	ained				
	 	Initial Eigenvalue	s	Extraction Sums of Squared Loadings				
Component	Total % <u>of</u> Variance Cumulativ		Cumulative %	Total	% of Variance	Cumulative %		
1	2.257	37.610	37.610	2.257	37.610	37.610		
2	1.914	31.904	69.514	1.914	31.904	69.514		
3	.751	12.517	82.031					
4	.496	8.273	90.303					
5	.348	5.804	96.108					
6	.234	3.892	100.000					
Extraction Method: Principal Component Analysis								

Extraction Method: Principal Component Analysis

4.2.4 Model results: Loadings in SPSS

4.2.5 Loadings

4.2.6 Simple structure and rotation

- Solution has **simple structure** if each item has **high loadings** on only one component and **near zero loadings** on all other components
 - i.e., points are near the axes
 - Easier to interpret: items only relate to one axis
- Rotated solution rotates the axes to get closer to simple structure
 - We'll look at some different ways to rotate the solution
 - * I'll show you a conceptual version now
 - Easier to interpret a solution that has simple structure

4.2.7 Loadings on rotated axes

4.2.8 PCA results

- 2. Communalities
 - Remember that we don't retain all the components
 - Communalities are the proportion of variance in X that's reproduced by the components (Y) that you do retain
 - Think: $R^2_{multiple}$ for Ys predicting Xs
 - This is weird, right? Yeah, I'll explain more

4.2.9 Model results: Communalities in R

x1 x2 x3 x4 x5 x6 0.7261219 0.8252297 0.6261259 0.6372285 0.8070047 0.5491167

4.2.10 Model results: Communalities in SPSS

Communalities								
Initial Extraction								
x1	1.000	.726						
x2	1.000	.825						
x3	1.000	.626						
x4	1.000	.637						
x5	1.000	807						
x6	1.000	549						
Extraction Method: Principal								
Compone	ent Analysis.							

4.2.11 PCA overview

- Loadings tell us how items are correlated with components
 - Simple structure makes loadings more interpretable
- **Communalities** tell us how much *variance* in the items is *explained* by *the components* we kept
- But where did the Ys / components even come from?

5 PCA details

5.1 PCA process

5.1.1 Step 1: Correlation matrix

• PCA starts by calculating the correlation matrix

$$\mathbf{R}_{XX} = \begin{bmatrix} 1 & r_{X_1X_2} & r_{X_1X_3} & r_{X_1X_4} & r_{X_1X_5} & r_{X_1X_6} \\ r_{X_2X_1} & 1 & r_{X_2X_3} & r_{X_2X_4} & r_{X_2X_5} & r_{X_2X_6} \\ r_{X_3X_1} & r_{X_3X_2} & 1 & r_{X_3X_4} & r_{X_3X_5} & r_{X_3X_6} \\ r_{X_4X_1} & r_{X_4X_2} & r_{X_4X_3} & 1 & r_{X_4X_5} & r_{X_4X_6} \\ r_{X_5X_1} & r_{X_5X_2} & r_{X_5X_3} & r_{X_5X_4} & 1 & r_{X_5X_6} \\ r_{X_6X_1} & r_{X_6X_2} & r_{X_6X_3} & r_{X_6X_4} & r_{X_6X_5} & 1 \end{bmatrix}$$

5.1.2 Step 1: Correlation matrix

• PCA starts by calculating the correlation matrix

	x1	x2	x3	x4	x5	x6
x1	1.0000	0.7041	0.4157	0.1406	0.1058	0.0814
x2	0.7041	1.0000	0.5428	0.1963	0.0538	0.1087
x3	0.4157	0.5428	1.0000	-0.1208	-0.1177	0.0276
x4	0.1406	0.1963	-0.1208	1.0000	0.6027	0.3249
x5	0.1058	0.0538	-0.1177	0.6027	1.0000	0.5651
x6	0.0814	0.1087	0.0276	0.3249	0.5651	1.0000

5.1.3 Step 2: Eigenvalues and eigenvectors

- Eigenvalues of correlation matrix
 - We're not going to do anything with these right now
- [1] 2.2566146 1.9142128 0.7510163 0.4963613 0.3482518 0.2335431
 - **Eigenvectors** of correlation matrix: $p \times r$ matrix
 - Each **column** is an eigenvector / axis

[,2] [,3] [,4] [,1] [,5] [,6] [1,] -0.4917076 0.3070964 0.2458906 0.54136266 -0.3027305 0.4676901 [2,] -0.5183409 0.3381863 0.1510558 0.05919316 0.3956537 -0.6588544 [3,] -0.3247308 0.4503119 -0.4335595 -0.64643283 -0.2133135 0.2010403 [4,] -0.3674707 -0.4167786 0.5131075 -0.44899215 0.3249147 0.3475890 [5,] -0.3632801 -0.5157586 -0.0382021 -0.05343548 -0.6660796 -0.3924843 [6,] -0.3421828 -0.3857845 -0.6811809 0.28477700 0.3963310 0.1785989

5.1.4 Step 3: Create latent Y variables

- The matrix of eigenvectors is **A**
 - If matrix not full rank, fewer columns

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix}$

5.1.5 Step 3: Create latent Y variables

$$\frac{\mathbf{Y}}{(n,r)} = \frac{\mathbf{X}}{(n,p)(p,r)} \mathbf{A}$$

- In this example
 - -100 subjects (n = 100)
 - Correlation matrix is full rank so p = r = 6
- Y has 100 rows and 6 columns

5.1.6 Step 3: Create latent Y variables

 $\frac{\mathbf{Y}}{(n,r)} = \frac{\mathbf{X} \cdot \mathbf{A}}{(n,p)(p,r)}$

- Each person now has
 - -6 X values (specific to each person)
 - -6 Y values (specific to each person)
 - Same values of **A**: these are **weights** (like in linear regression, same weights for everyone)

5.1.7 Step 3: Create latent Y variables

- Y variables are **linear combinations** of Xs and **A**
 - Each Y is an $n \times 1$ vector
- First Y variable: $\underline{Y}_1 = a_{11}\underline{X}_1 + a_{21}\underline{X}_2 + a_{31}\underline{X}_3 + a_{41}\underline{X}_4 + a_{51}\underline{X}_5 + a_{61}\underline{X}_6$
- Second Y variable: $\underline{Y}_2 = a_{12}\underline{X}_1 + a_{22}\underline{X}_2 + a_{32}\underline{X}_3 + a_{42}\underline{X}_4 + a_{52}\underline{X}_5 + a_{62}\underline{X}_6$
- Looks like a regression, but note that it's not \hat{Y} and there's no +e

5.1.8 Step 4: Use orthogonal *Y*s to predict original *X*s

 $\frac{\mathbf{X}}{(n,p)} = \frac{\mathbf{Y} \cdot \mathbf{B}}{(n,r)(r,p)}$

- *Y*s are **orthogonal**
 - Now use them as (uncorrelated) predictors to predict Xs
- **B** is the (unrotated) matrix of loadings
 - Rows = components, columns = items

5.1.9 Step 4: Use orthogonal *Y*s to predict original *X*s

$$\begin{aligned} \mathbf{X} &= \mathbf{Y} \quad \mathbf{B} \\ (n,p) &= \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & b_{26} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} & b_{36} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45} & b_{46} \\ b_{51} & b_{52} & b_{53} & b_{54} & b_{55} & b_{56} \\ b_{61} & b_{62} & b_{63} & b_{64} & b_{65} & b_{66} \end{bmatrix} \end{aligned}$$

5.1.10 Four things about the loadings matrix

- In practice, it will have **fewer rows**
 - We don't retain all the components (e.g., 2 in this example)
- Unlike a lot of matrices we look at
 - All elements are unique $(b_{21} \neq b_{12})$
- In software, the **transpose** of this matrix is given
 - Rows = items, columns = components
- Think of them like standardized regression coefficients
 - But since Y are orthogonal, they're **not partial coefficients**

5.1.11 One thing about communalities

- Communalities are the proportion of variance in X that's reproduced by the components (Y) that you do retain

 - Think: $R^2_{multiple}$ for Ys predicting Xs But why Y predicting X? That's backward!
- We don't do a perfect job re-creating the information from p variables using fewer than p components
 - How much variance in Xs did we **retain** with the Ys that we **retained**?

6 How many components?

6.1 How many components?

6.1.1 How many components?

- The main objective of PCA is to reduce the number of variables
 - Have p X variables
 - Want to be able to describe them with **fewer** than p Y variables
- There are several methods to choose
 - Often give different results

6.2 Scree plot

6.2.1 Scree plot

6.2.2 Scree plot

- First component accounts for the most variance
 - Second component accounts for less, third for even less, etc.
- At what point does adding more components not help account for more variance?
 - Look for "drop" in the scree plot
 - Somewhat arbitrary, can be difficult to determine

6.3 Kaiser criteria

6.3.1 Kaiser criteria: Don't use this

- Also called "eigenvalues greater than 1" criteria
 - With PCA, you're dealing with the correlation matrix
 - Diagonals are all 1s
 - If each component accounts for "its share" of the variance
 - * Then all eigenvalues are 1
 - * Components with eigenvalue > 1 are doing better than that
- Tends to over-extract (too many components)

6.3.2 Kaiser criteria

6.4 Proportion of variance

6.4.1 Proportion of variance accounted for

- Kepp any component that accounts for more than a certain percentage of variance
 - Must choose some arbitrary percentage
 - Not commonly used in psychology
 - * More commonly used in engineering

6.5 Parallel analysis

6.5.1 Parallel analysis

- Simulation based method
- Generate random correlation matrices with same p and n as data
 - Two ways: new simulated data or re-sample from your data
 - Estimate the eigenvalues from these random correlation matrices
 - Retain components with eigenvalues higher than (default) 95% ile of the random values

Parallel Analysis Scree Plots

6.5.3 Parallel analysis in SPSS

- Requires some external scripts with lots of those MATRIX statements
 - Brian O'Connor's website
 - Youtube video explaining
 - Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational research methods, 7(2), 191-205.

Run MATRIX procedure:

PARALLEL ANALYSIS:

Principal Components

Specifications for this Run: Ncases 100 Nvars 6 Ndatsets 1000 Percent 95

Random Data 1	Eigenvalues	
Roo	. Means	Prcntyle
1.00000	1.342755	1.494631
2.00000	1.173098	1.272529
3.00000	1.043653	1.115745
4.00000	.932429	1.005241
5.00000	.819450	.903491
6.00000	.688615	.788492

----- END MATRIX -----

		Tota	al Variance Expl	ained				
		Initial Eigenvalue	es	Extraction Sums of Squared Loadings				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	2.257	37.610	37.610	2.257	37.610	37.610		
2	1.914	31.904	69.514	1.914	31.904	69.514		
3	.751	12.517	82.031					
4	.496	8.273	90.303					
5	.348	5.804	96.108					
6	.234	3.892	100.000					

Extraction Method. Principal Component Analysis.

6.5.4 Parallel analysis in SPSS

6.6 MAP

6.6.1 Minimum average partials (MAP)

- Look at "partialed" correlation matrix after each component
 - First component accounts for the most variance
 - * After the first component is partialled out, correlations between variables should be smaller
 - Second component account for the next most variance
 - * After the second component is partialled out, correlations between variables should be smaller, etc
 - You have **enough components** when average partial correlation is **minimized**

6.6.2 MAP test in R

Number of factors

```
Statistics by number of factors
```

	vss1	vss2	\mathtt{map}	dof	chisq	prob	sqresid	fit	RMSEA	BIC	SABIC	complex
1	0.47	0.00	0.20	9	9.3e+01	4.1e-16	5.2	0.47	0.305	52	79.9	1.0
2	0.48	0.84	0.12	4	7.6e+00	1.1e-01	1.5	0.84	0.094	-11	1.8	1.8
3	0.60	0.85	0.23	0	8.3e-01	NA	1.1	0.88	NA	NA	NA	2.0
4	0.59	0.87	0.43	-3	6.2e-09	NA	0.9	0.91	NA	NA	NA	2.3
5	0.58	0.87	1.00	-5	0.0e+00	NA	0.8	0.92	NA	NA	NA	2.3
6	0.58	0.87	NA	-6	0.0e+00	NA	0.8	0.92	NA	NA	NA	2.3
	eCh	isq	SRMF	R eCF	RMS eBIC							

```
1 1.6e+02 2.3e-01 0.300
                          121
2 3.6e+00 3.4e-02 0.067
                          -15
3 1.8e-01 7.8e-03
                     NA
                           NA
4 1.0e-09 5.8e-07
                     NA
                           NA
5 5.4e-16 4.2e-10
                     NA
                           NA
6 5.4e-16 4.2e-10
                      NA
                           NA
```

6.6.3 MAP test in SPSS

- See resources for parallel analysis
 - Those include Velicer's MAP test

6.7 Solution makes sense

6.7.1 Solution makes sense (theoretically)

- Do the components make sense?
 - Does it make sense for the items that load highly on each component to belong together?
- Don't use this as your only criterion
 - This is what makes this science
 - Not just a computer spitting out numbers

6.8 Summary of number of components

6.8.1 Summary of choosing number of components

- Several methods available
 - Best case: They'll all agree
 - More likely: They will not
- When in doubt, go with parallel analysis or MAP
 - Scree plot and Kaiser don't work well
- Also consider rotated solutions (next)

7 Rotation

7.1 Simple structure

7.1.1 Simple structure and rotation

- Solution has **simple structure** if each item has **high loadings** on only one component and **near zero loadings** on all other components
 - i.e., points are near the axes
 - Easier to interpret: items only relate to one axis
- Rotated solution rotates the axes to get closer to *simple structure*
 - We'll look at some different ways to rotate the solution
 - * I'll show you one way right now
 - Easier to interpret a solution that has simple structure

7.1.2 Loadings on unrotated vs rotated axes

• Loadings on unrotated axes

• Loadings on rotated axes

7.2 Orthogonal and oblique rotation

7.2.1 Orthogonal rotation

- Orthogonal means uncorrelated
 - Geometrically, axes are **perpendicular** (right angles)
- Components are all mutually orthogonal to start
 - Because the eigenvectors are mutually orthogonal
- Orthogonal rotation **rotates** the axes but keeps them uncorrelated

7.2.2 Orthogonal rotations

- Varimax
 - ${\bf Max}{\rm imizes}$ the ${\bf var}{\rm iance}$ of squared loadings

- High variance means loadings are bimodal
- Bimodal: loadings near 0 or 1 (simple structure)

7.2.3 Oblique rotation

- Oblique means correlated
 - Geometrically, axes are **NOT perpendicular**
- Oblique rotation rotates the axes and also changes the angle between them
 - Components are **correlated**
 - Additional output: correlations between components

7.2.4 Oblique rotations

- Oblimin
 - Minimize correlation between components while trying to eliminate "in between" loadings (0.1 to 0.3)
- Promax
 - Work toward a *target loading matrix*
 - Target matrix is loading matrix raised to a *power*
 - Move axes toward to get closer to target matrix
 - Can be difficult to use well: which power to raise to?

8 Conclusion

8.1 Summary of this week

8.1.1 Summary of this week

- Principal components analysis (PCA)
 - Reduce # of variables (from p variables to < p components)
 - Loadings relate items to components
 - Communalities are how much variance in each item is retained with that number components
 - Rotation to improve interpretability, correlate components

8.2 Next week

8.2.1 Next week

- Factor analysis

 - Related to PCA, but quite different modelDifferent set of assumptions: Aligns with psychology