
Multivariate: Principal components analysis
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• Principal components analysis (PCA)

– Dimension reduction: reduce number of variables

• A large set of (potentially correlated) observed variables

– Organize the variance in those variables to a smaller set of orthogonal (uncorre-
lated) variables

2 Statistical measurement

2.1 Statistical measurement

2.1.1 Measuring things is hard

• Psychology: we cannot directly measure some constructs

– No ruler to measure “intelligence” or “introversion”

• We can indirectly measure what we really want to measure

– Want to measure intelligence
∗ Math ability, verbal ability, spatial ability, reasoning, general knowledge, etc.

– Intelligence is a latent variable
∗ Not directly observed
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2.1.2 Two ways to think about latent variables

1. Latent variable is a result of item responses

• Formative latent variable
• Principal components analysis (PCA)
• This week

2. Latent variable causes item responses

• Reflective latent variable
• Factor analysis (FA)
• Next week (and most of what you’ll do)

2.1.3 Formative vs reflective latent variables

• Formative factor

Life events

X2X1 X3

• Reflective factor

Intelligence

Y2Y1 Y3
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2.1.4 Latent variables as dimension reduction

• In each of these examples

– 3 observed variables and 1 latent variable

• But you can have many more observed variables

– As many measures of the latent variable as you have

• Often more than 1 latent variable

– Number of latent variables < number of observed variables
∗ Dimension reduction

3 Super quick review

3.1 Eigenvectors and eigenvalues

3.1.1 Eigenvectors and eigenvalues

• Eigenvectors / values are the solution to homogenous equations

– [A − 𝜆I]𝜈 = 0
– 𝜆 (lambda) is the eigenvalues, 𝜈 (nu) is the eigenvectors

• Maximize a function while also imposing some constraints

– In the case of PCA
– Maximize the variance (1st eigenvalue is largest)
– Constrain eigenvectors to be orthogonal

3.1.2 Eigenvectors

• Eigenvectors are created from a matrix (such as R𝑋𝑋)

– Form basis or reference axes for that matrix
– All mutually orthogonal

• If matrix is full rank

– As many eigenvectors as variables (from a corr or cov matrix)
∗ 𝑝 variables means 𝑝 eigenvalues and eigenvectors
∗ 5 variables means 5 eigenvalues and eigenvectors
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3.1.3 Eigenvalues

• One eigenvalue for each eigenvector

– How much variance associated with that eigenvector
– First eigenvector has the highest eigenvalue, then decreases

• Sum of eigenvalues for a matrix = sum of diagonal elements

– 5 × 5 correlation matrix → eigenvalues add to 5

4 Data Example

4.1 Measure and variables

4.1.1 Simulated data

• Data from last week’s class

– 100 subjects
– 6 continuous variables

• Color-coded correlation matrix

5



x1

x2

x3

x4

x5

x6

x1 x2 x3 x4 x5 x6

−1.0

−0.5

0.0

0.5

1.0
Corr

4.1.2 Observed and latent variables

• Observed variables

– 6 variables
– These are all 𝑋 variables: they predict the latent variable

• Latent variables

– These are the 𝑌 variables
– They are the components (PCA)
– We create them in the analysis

4.2 Output of the analysis

4.2.1 Data reduction

• The idea behind PCA is to reduce the number of variables
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– Start with 6 items
∗ Want fewer than 6 components
∗ How many fewer?

• I simulated the data to have 2 “clumps”

– We talked about this last week
– So I’ll show you a 2 component model to start

4.2.2 PCA results

1. Loadings

• Relation between observed variable (𝑋) and component (𝑌 )
– Matrix with rows = # items, columns = # components
– High loading = that 𝑋 is highly related to that 𝑌

• Think: correlation or standardized regression coefficient
– Range from -1 to 1

4.2.3 Model results: Loadings in R

Loadings:
PC1 PC2

x1 0.739 -0.425
x2 0.779 -0.468
x3 0.488 -0.623
x4 0.552 0.577
x5 0.546 0.714
x6 0.514 0.534

PC1 PC2
SS loadings 2.257 1.914
Proportion Var 0.376 0.319
Cumulative Var 0.376 0.695
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4.2.4 Model results: Loadings in SPSS

4.2.5 Loadings

−1 1

−1

1

x1x2

x3

x4

x5

x6

4.2.6 Simple structure and rotation

• Solution has simple structure if each item has high loadings on only one component
and near zero loadings on all other components

– i.e., points are near the axes
– Easier to interpret: items only relate to one axis

• Rotated solution rotates the axes to get closer to simple structure

– We’ll look at some different ways to rotate the solution
∗ I’ll show you a conceptual version now

– Easier to interpret a solution that has simple structure
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4.2.7 Loadings on rotated axes
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4.2.8 PCA results

2. Communalities

• Remember that we don’t retain all the components
• Communalities are the proportion of variance in 𝑋 that’s reproduced by the com-

ponents (𝑌 ) that you do retain
• Think: 𝑅2

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 for 𝑌 s predicting 𝑋s
– This is weird, right? Yeah, I’ll explain more

4.2.9 Model results: Communalities in R

x1 x2 x3 x4 x5 x6
0.7261219 0.8252297 0.6261259 0.6372285 0.8070047 0.5491167
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4.2.10 Model results: Communalities in SPSS

4.2.11 PCA overview

• Loadings tell us how items are correlated with components

– Simple structure makes loadings more interpretable

• Communalities tell us how much variance in the items is explained by the components
we kept

• But where did the 𝑌 s / components even come from?
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5 PCA details

5.1 PCA process

5.1.1 Step 1: Correlation matrix

• PCA starts by calculating the correlation matrix

R𝑋𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑟𝑋1𝑋2
𝑟𝑋1𝑋3

𝑟𝑋1𝑋4
𝑟𝑋1𝑋5

𝑟𝑋1𝑋6
𝑟𝑋2𝑋1

1 𝑟𝑋2𝑋3
𝑟𝑋2𝑋4

𝑟𝑋2𝑋5
𝑟𝑋2𝑋6

𝑟𝑋3𝑋1
𝑟𝑋3𝑋2

1 𝑟𝑋3𝑋4
𝑟𝑋3𝑋5

𝑟𝑋3𝑋6
𝑟𝑋4𝑋1

𝑟𝑋4𝑋2
𝑟𝑋4𝑋3

1 𝑟𝑋4𝑋5
𝑟𝑋4𝑋6

𝑟𝑋5𝑋1
𝑟𝑋5𝑋2

𝑟𝑋5𝑋3
𝑟𝑋5𝑋4

1 𝑟𝑋5𝑋6
𝑟𝑋6𝑋1

𝑟𝑋6𝑋2
𝑟𝑋6𝑋3

𝑟𝑋6𝑋4
𝑟𝑋6𝑋5

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

5.1.2 Step 1: Correlation matrix

• PCA starts by calculating the correlation matrix

x1 x2 x3 x4 x5 x6
x1 1.0000 0.7041 0.4157 0.1406 0.1058 0.0814
x2 0.7041 1.0000 0.5428 0.1963 0.0538 0.1087
x3 0.4157 0.5428 1.0000 -0.1208 -0.1177 0.0276
x4 0.1406 0.1963 -0.1208 1.0000 0.6027 0.3249
x5 0.1058 0.0538 -0.1177 0.6027 1.0000 0.5651
x6 0.0814 0.1087 0.0276 0.3249 0.5651 1.0000

5.1.3 Step 2: Eigenvalues and eigenvectors

• Eigenvalues of correlation matrix

– We’re not going to do anything with these right now

[1] 2.2566146 1.9142128 0.7510163 0.4963613 0.3482518 0.2335431

• Eigenvectors of correlation matrix: 𝑝 × 𝑟 matrix

– Each column is an eigenvector / axis
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.4917076 0.3070964 0.2458906 0.54136266 -0.3027305 0.4676901
[2,] -0.5183409 0.3381863 0.1510558 0.05919316 0.3956537 -0.6588544
[3,] -0.3247308 0.4503119 -0.4335595 -0.64643283 -0.2133135 0.2010403
[4,] -0.3674707 -0.4167786 0.5131075 -0.44899215 0.3249147 0.3475890
[5,] -0.3632801 -0.5157586 -0.0382021 -0.05343548 -0.6660796 -0.3924843
[6,] -0.3421828 -0.3857845 -0.6811809 0.28477700 0.3963310 0.1785989

5.1.4 Step 3: Create latent 𝑌 variables

• The matrix of eigenvectors is A

– If matrix not full rank, fewer columns

A =

⎡
⎢⎢⎢⎢⎢
⎣

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56
𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66

⎤
⎥⎥⎥⎥⎥
⎦

5.1.5 Step 3: Create latent 𝑌 variables

Y
(𝑛, 𝑟) = X

(𝑛, 𝑝)
A

(𝑝, 𝑟)

• In this example

– 100 subjects (𝑛 = 100)
– Correlation matrix is full rank so 𝑝 = 𝑟 = 6

• Y has 100 rows and 6 columns

5.1.6 Step 3: Create latent 𝑌 variables

Y
(𝑛, 𝑟) = X

(𝑛, 𝑝)
A

(𝑝, 𝑟)

• Each person now has

– 6 𝑋 values (specific to each person)
– 6 𝑌 values (specific to each person)
– Same values of A: these are weights (like in linear regression, same weights for

everyone)
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5.1.7 Step 3: Create latent 𝑌 variables

• 𝑌 variables are linear combinations of 𝑋s and A

– Each 𝑌 is an 𝑛 × 1 vector

• First Y variable: 𝑌 1 = 𝑎11𝑋1 + 𝑎21𝑋2 + 𝑎31𝑋3 + 𝑎41𝑋4 + 𝑎51𝑋5 + 𝑎61𝑋6

• Second Y variable: 𝑌 2 = 𝑎12𝑋1 + 𝑎22𝑋2 + 𝑎32𝑋3 + 𝑎42𝑋4 + 𝑎52𝑋5 + 𝑎62𝑋6

• Looks like a regression, but note that it’s not ̂𝑌 and there’s no +𝑒

5.1.8 Step 4: Use orthogonal 𝑌 s to predict original 𝑋s

X
(𝑛, 𝑝) = Y

(𝑛, 𝑟)
B

(𝑟, 𝑝)

• 𝑌 s are orthogonal

– Now use them as (uncorrelated) predictors to predict 𝑋s

• B is the (unrotated) matrix of loadings

– Rows = components, columns = items

5.1.9 Step 4: Use orthogonal 𝑌 s to predict original 𝑋s

X
(𝑛, 𝑝) = Y

(𝑛, 𝑟)
B

(𝑟, 𝑝)

B =

⎡
⎢⎢⎢⎢⎢
⎣

𝑏11 𝑏12 𝑏13 𝑏14 𝑏15 𝑏16
𝑏21 𝑏22 𝑏23 𝑏24 𝑏25 𝑏26
𝑏31 𝑏32 𝑏33 𝑏34 𝑏35 𝑏36
𝑏41 𝑏42 𝑏43 𝑏44 𝑏45 𝑏46
𝑏51 𝑏52 𝑏53 𝑏54 𝑏55 𝑏56
𝑏61 𝑏62 𝑏63 𝑏64 𝑏65 𝑏66

⎤
⎥⎥⎥⎥⎥
⎦
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5.1.10 Four things about the loadings matrix

• In practice, it will have fewer rows

– We don’t retain all the components (e.g., 2 in this example)

• Unlike a lot of matrices we look at

– All elements are unique (𝑏21 ≠ 𝑏12)

• In software, the transpose of this matrix is given

– Rows = items, columns = components

• Think of them like standardized regression coefficients

– But since 𝑌 are orthogonal, they’re not partial coefficients

5.1.11 One thing about communalities

• Communalities are the proportion of variance in 𝑋 that’s reproduced by the compo-
nents (𝑌 ) that you do retain

– Think: 𝑅2
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 for 𝑌 s predicting 𝑋s

– But why 𝑌 predicting 𝑋? That’s backward!

• We don’t do a perfect job re-creating the information from 𝑝 variables using fewer than
𝑝 components

– How much variance in 𝑋s did we retain with the 𝑌 s that we retained?

6 How many components?

6.1 How many components?

6.1.1 How many components?

• The main objective of PCA is to reduce the number of variables

– Have 𝑝 𝑋 variables
– Want to be able to describe them with fewer than 𝑝 𝑌 variables

• There are several methods to choose

– Often give different results
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6.2 Scree plot

6.2.1 Scree plot
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6.2.2 Scree plot

• First component accounts for the most variance

– Second component accounts for less, third for even less, etc.

• At what point does adding more components not help account for more variance?

– Look for “drop” in the scree plot
– Somewhat arbitrary, can be difficult to determine
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6.3 Kaiser criteria

6.3.1 Kaiser criteria: Don’t use this

• Also called “eigenvalues greater than 1” criteria

– With PCA, you’re dealing with the correlation matrix
– Diagonals are all 1s
– If each component accounts for “its share” of the variance

∗ Then all eigenvalues are 1
∗ Components with eigenvalue > 1 are doing better than that

• Tends to over-extract (too many components)

6.3.2 Kaiser criteria
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6.4 Proportion of variance

6.4.1 Proportion of variance accounted for

• Kepp any component that accounts for more than a certain percentage of variance

– Must choose some arbitrary percentage
– Not commonly used in psychology

∗ More commonly used in engineering

6.5 Parallel analysis

6.5.1 Parallel analysis

• Simulation based method

• Generate random correlation matrices with same 𝑝 and 𝑛 as data

– Two ways: new simulated data or re-sample from your data
– Estimate the eigenvalues from these random correlation matrices
– Retain components with eigenvalues higher than (default) 95%ile of the random

values
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6.5.2 Parallel analysis in R
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Parallel analysis suggests that the number of factors = NA and the number of components = 2

6.5.3 Parallel analysis in SPSS

• Requires some external scripts with lots of those MATRIX statements

– Brian O’Connor’s website
– Youtube video explaining
– Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in

exploratory factor analysis: A tutorial on parallel analysis. Organizational research
methods, 7(2), 191-205.
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6.5.4 Parallel analysis in SPSS

6.6 MAP

6.6.1 Minimum average partials (MAP)

• Look at “partialed” correlation matrix after each component

– First component accounts for the most variance
∗ After the first component is partialled out, correlations between variables

should be smaller
– Second component account for the next most variance

∗ After the second component is partialled out, correlations between variables
should be smaller, etc

– You have enough components when average partial correlation is minimized
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6.6.2 MAP test in R
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Number of factors
Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,

n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of 0.6 with 3 factors
VSS complexity 2 achieves a maximimum of 0.87 with 5 factors
The Velicer MAP achieves a minimum of 0.12 with 2 factors
Empirical BIC achieves a minimum of -14.87 with 2 factors
Sample Size adjusted BIC achieves a minimum of 1.77 with 2 factors

Statistics by number of factors
vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex

1 0.47 0.00 0.20 9 9.3e+01 4.1e-16 5.2 0.47 0.305 52 79.9 1.0
2 0.48 0.84 0.12 4 7.6e+00 1.1e-01 1.5 0.84 0.094 -11 1.8 1.8
3 0.60 0.85 0.23 0 8.3e-01 NA 1.1 0.88 NA NA NA 2.0
4 0.59 0.87 0.43 -3 6.2e-09 NA 0.9 0.91 NA NA NA 2.3
5 0.58 0.87 1.00 -5 0.0e+00 NA 0.8 0.92 NA NA NA 2.3
6 0.58 0.87 NA -6 0.0e+00 NA 0.8 0.92 NA NA NA 2.3

eChisq SRMR eCRMS eBIC
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1 1.6e+02 2.3e-01 0.300 121
2 3.6e+00 3.4e-02 0.067 -15
3 1.8e-01 7.8e-03 NA NA
4 1.0e-09 5.8e-07 NA NA
5 5.4e-16 4.2e-10 NA NA
6 5.4e-16 4.2e-10 NA NA

6.6.3 MAP test in SPSS

• See resources for parallel analysis

– Those include Velicer’s MAP test

6.7 Solution makes sense

6.7.1 Solution makes sense (theoretically)

• Do the components make sense?

– Does it make sense for the items that load highly on each component to belong
together?

• Don’t use this as your only criterion

– This is what makes this science
– Not just a computer spitting out numbers

6.8 Summary of number of components

6.8.1 Summary of choosing number of components

• Several methods available

– Best case: They’ll all agree
– More likely: They will not

• When in doubt, go with parallel analysis or MAP

– Scree plot and Kaiser don’t work well

• Also consider rotated solutions (next)
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7 Rotation

7.1 Simple structure

7.1.1 Simple structure and rotation

• Solution has simple structure if each item has high loadings on only one component
and near zero loadings on all other components

– i.e., points are near the axes
– Easier to interpret: items only relate to one axis

• Rotated solution rotates the axes to get closer to simple structure

– We’ll look at some different ways to rotate the solution
∗ I’ll show you one way right now

– Easier to interpret a solution that has simple structure

7.1.2 Loadings on unrotated vs rotated axes

• Loadings on unrotated axes

−1 1

−1

1

x1x2

x3

x4

x5

x6
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• Loadings on rotated axes

−1 1

−1

1

x1x2

x3

x4

x5

x6

7.2 Orthogonal and oblique rotation

7.2.1 Orthogonal rotation

• Orthogonal means uncorrelated

– Geometrically, axes are perpendicular (right angles)

• Components are all mutually orthogonal to start

– Because the eigenvectors are mutually orthogonal

• Orthogonal rotation rotates the axes but keeps them uncorrelated

7.2.2 Orthogonal rotations

• Varimax

– Maximizes the variance of squared loadings
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– High variance means loadings are bimodal
– Bimodal: loadings near 0 or 1 (simple structure)

7.2.3 Oblique rotation

• Oblique means correlated

– Geometrically, axes are NOT perpendicular

• Oblique rotation rotates the axes and also changes the angle between them

– Components are correlated
– Additional output: correlations between components

7.2.4 Oblique rotations

• Oblimin

– Minimize correlation between components while trying to eliminate “in between”
loadings (0.1 to 0.3)

• Promax

– Work toward a target loading matrix
– Target matrix is loading matrix raised to a power
– Move axes toward to get closer to target matrix
– Can be difficult to use well: which power to raise to?

8 Conclusion

8.1 Summary of this week

8.1.1 Summary of this week

• Principal components analysis (PCA)

– Reduce # of variables (from 𝑝 variables to < 𝑝 components)
– Loadings relate items to components
– Communalities are how much variance in each item is retained with that number

components
– Rotation to improve interpretability, correlate components
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8.2 Next week

8.2.1 Next week

• Factor analysis

– Related to PCA, but quite different model
– Different set of assumptions: Aligns with psychology
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