Multivariate: Factor analysis
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1 Goals

1.1 Goals
1.1.1 Goals of this lecture

o Factor analysis (FA)
— Dimension reduction: reduce number of variables
« A large set of (potentially correlated) observed variables

— Organize the covariance in those variables to a smaller set of orthogonal (uncor-
related) variables

e Similar to PCA but

— Assumptions of FA are closer to what we expect in psychology

2 PCA vs FA

2.1 Statistical measurement
2.1.1 Measuring things is hard

e Psychology: we cannot directly measure some constructs
— No ruler to measure “intelligence” or “introversion”
e We can indirectly measure what we really want to measure

— Want to measure intelligence
+x Math ability, verbal ability, spatial ability, reasoning, general knowledge, etc.
— Intelligence is a latent variable
* Not directly observed
2.1.2 Formative vs reflective latent variables

e Formative factor

¢ Reflective factor
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2.1.3 Measurement theory

e Psychometric theory: Latent variable is “true score”

o Observed score (Y) is a function of true score and error

— True score is “real” score assuming no error (latent variable)
— Error can be measurement error or random error

2.1.4 Measurement theory

 Observed score: Y; =T; + ¢;;

(2
— True score (latent variable): T
— Error: e;;
 Variance of score:

= Var(Y;) = Var(T;) + Var(e;;)
— (Assuming no covariance between true score and error, which we do assume)



2.1.5 Measurement theory
Ld Y’L == TZ + e’ij
o FA partitions variance in each item into

— Common portion: due to latent factors / true scores
— Unique portion: due to error

¢ Big idea in factor analysis: Any correlations between items are due to what they have
in common (i.e. a common latent factor)

2.1.6 Measurement theory

Y1 Yo Ys

Intelligence

2.2 Differences between PCA and FA
2.2.1 Similar models, important differences

e Both PCA and FA are data reduction methods

— You have many variables
— You want to describe them using fewer dimensions

e Both PCA and FA are also latent variable methods

— You have observed variables
— They’re related to unobserved (latent) variables

¢ Beyond that, several important theoretical and statistical differences



2.2.2 Common and unique variance

« PCA: All variance is explained by latent variables

— If you retained all components, you’d perfectly re-create the observed variables
— Initial communalities = 1.00

o FA: Variance is divided into common and unique (error)

— Even if you retained all factors, there’s still measurement error
— Latent variables never explain all variance in observed
— Initial communalities < 1.00

2.2.3 Causal ordering

« PCA: Observed variables cause latent variables
— Latent variable is linear combination of observed
« FA: Latent variables cause responses on observed variables

— Latent variable is a trait that causes a person to respond to the observed variables
in a certain way

2.2.4 Variance or covariance / correlation?

e PCA: Partitions variance in each variable

— Correlation / covariance largely ignored
— Variables don’t even need to be correlated

¢ FA: Partitions variance, but in the service of splitting into common and unique
portion

— Correlations between variables define “common variance”
— Variables related to the same factor are correlated

2.3 Summary
2.3.1 Summary

e Factor analysis and PCA are similar

— FA assumes measurement error
— FA assumes latent factors cause responses

x FA relies on correlations to get at this



3 Data Example

3.1 Measure and variables

3.1.1 Simulated data

x1
X2
x3
x4
x5
x6

e Similar to previous data

— 1000 subjects
— 6 continuous variables

e Covariance matrix

x1
.871
.912
.944
.312
.344
.226

O O O O O+

O O O O~ O

x2

.912
.830
.994
. 367
.385
.315

O O O N O O

x3

.944
.994
.059
.287
.362
. 267

= B, N O O O

x4

.312
.367
.287
.150
112
.091

x5

0.344
0.385
0.
1
2
1

362

.112
L1117
.041

e Color-coded correlation matrix

N, P, O OO

x6

.226
.315
.267
.091
.041
.016



Corr

4 & £ > P ©

3.1.2 Observed and latent variables

e Observed variables

— 6 variables
— These are all Y variables: they are predicted by the latent variables

o Latent variables

— These are the X variables
— They are the factors
— We create them in the analysis

3.2 Output of the analysis
3.2.1 Data reduction

e The idea behind FA is to reduce the number of variables



— Start with 6 items

x Want fewer than 6 factors
* How many fewer?

e I simulated the data to have 2 “clumps”

— We talked about this the past few weeks
— So I'll show you a 2 factor model to start

3.2.2 FA results

1. Loadings

o Relation between latent factor (X) and observed variable (Y)

— Matrix with rows = # items, columns = # factors
— High loading = that X is highly related to that Y

e Think: correlation or standardized regression coefficient

— Range from -1 to 1

3.2.3 Model results: Loadings in R

Loadings:
PA1 PA2

x1 0.535 0.422
x2 0.590 0.420
x3 0.549 0.446
x4 0.605 -0.417
x5 0.607 -0.368
x6 0.573 -0.424

PA1  PA2
SS loadings 1.999 1.043
Proportion Var 0.333 0.174
Cumulative Var 0.333 0.507



 a. 2 factors extracted. 7 iterations

Factor Matrix*
X 535 422
2 590 420
P 549 446
x4 605 417
P 607 368
X6 573 424
Extraction Method: Principal Axis
Factoring.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings

Factor Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.490 41.506 41.506 1.999 33.309 33.309
2 1.537 25.612 87.118 1.043 17.383 50.691
3 528 8.806 75.924

4 499 8.315 84.239

5] 482 8.027 92.267

6 464 7.733 100.000

Extraction Method: Principal Axis Factoring.




3.2.4 Model results: Loadings in SPSS

3.2.5 Loadings

1 I
X2
Qo
| |
-1 1
X
X
o0
_1 I

3.2.6 Simple structure and rotation
¢ Solution has simple structure if each item has high loadings on only one factor and
near zero loadings on all other factor

— i.e., points are near the axes
— Easier to interpret: items only relate to one axis

¢ Rotated solution rotates the axes to get closer to simple structure

— We'll look at some different ways to rotate the solution
x Conceptual version now

— Easier to interpret a solution that has simple structure
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3.2.7 Loadings on rotated axes

3.2.8 FA results

2. Communalities
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¢ Remember that we don’t retain all the factors

e Communalities are the proportion of variance in Y that’s explained by the factors

(X) that you do retain

o Think: R?

maultiple 10T Xs predicting Vs

— This is the normal order (unlike PCA): X predicts Y

3.2.9 Model results: Communalities in R

x1 X2 x3

x4 x5 x6

0.4635790 0.5250197 0.5010631 0.5416307 0.5028439 0.5079958
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3.2.10 Model results: Communalities in SPSS

______________ Communalities

Initisl ___Extraction _
X1 318 465
X2 352 524
X3 334 500
x4 368 540
X5 355 504
X6 349 508
Extraction Method: Principal Axis
Factoring.

3.2.11 FA overview

¢ Loadings tell us how items are correlated with factors

— Simple structure makes loadings more interpretable
— Use rotation to try to get simple structure

¢« Communalities tell us how much variance in the items is explained by the factors we
kept

4 FA details

4.1 Exploratory vs confirmatory
4.1.1 Exploratory vs confirmatory FA

o Two kinds of factor analysis
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— Obviously related, but also different models

1. Exploratory factor analysis (EFA) in this course
e It is a “classic multivariate technique”
2. Confirmatory factor analysis (CFA) discussed briefly

o CFA falls under structural equation modeling (SEM)

4.1.2 Exploratory factor analysis (EFA)

e EFA explores the factor structure of the variables

— Largely atheoretical

— Discover how many factors may be present

— Few (if any) pre-conceptions about which items may have high or low loadings on
which factors

4.1.3 Confirmatory factor analysis (CFA)

e CFA confirms a pre-existing factor structure

— Requires theory to construct
— Hypothesize a specific number of factors
— Allow each item to load on only one factor

x All other loadings are 0

4.1.4 EFA vs CFA: matrix of loadings

« EFA
Item F1 F2 F3
1 0.618 0.094 -0.049
2 0.440 -0.075 0.065
3 0.671 0.037 0.041
4 0.031 0.731 -0.079
5 0.126  0.705 0.053
6 0.265 0.296 0.603

« CFA
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Item F1 F2 F3

1 0.620 0 0
2 0.450 0 0
3 0.665 0 0
4 0 0.725 0
5 0 0.689 0
6 613

0 0 0.

o Zeroes are “fixed”: we specify that those loadings are 0 so don’t estimate them

4.2 FA model
4.2.1 FA model

Y, =T, + €ij
o FA partitions variance in each item into

— Common portion: due to latent factors / true scores
— Unique portion: due to error

o Big idea: Any correlations between items are due to what they have in common (i.e. a
common latent factor)

4.2.2 FA model

Y, Y Y3

Intelligence

14



4.2.3 FA model

o Partition variance of each item into common and unique portions

— Common portion: due to latent factors
x Correlations between variables due to common latent factor

— Unique portion: Error (measurement or otherwise)

4.2.4 FA model

o There are p variables (items) and m factors
o RYY — ARFA/ + D2

— Ry = p X p matrix of observed item correlations
A = p x m matrix of loadings

— Ry = m x m matrix of correlations between factors
2 . . .
D” = p x p matrix of unique variances

4.2.5 Common variance portion

ARy A =
[ay1 aq 9]
g1 Qg9
sy 0a32 [‘712?1 UFlFQ] [01,1 Qg1 Q371 Q471 G571 Gg
Ag1 Q49 OF,F, 012?2 Q12 Q22 Q32 Qg9 A59 Ggo
51 052

Lag,1 Qg2

o The common (shared) portion of the variance involves the correlations among factors
(Ry) and the loadings (A)

4.2.6 Unique variance portion

e The matrix of “uniquenesses” is a diagonal matrix

— Items are related only through common factor
— There are no correlations between uniquenesses across variables

15



0
0 d 0 0 0
0

0
0
0 0 0 0 ds
L0

e d; is the “uniqueness” for item 1

— d? is the unique variance for item 1

4.3 Extraction methods
4.3.1 Extraction methods

Two kinds of extraction (estimation) for EFA

. Principal axis factoring (PAF), also called principal factor analysis
. Maximum likelihood factor analysis (MLFA)

N =

e Either method is fine, but use PAF if items are not normally distributed

— Fabrigar, Wegener, MacCallum, & Strahan (1999)
— Osborne & Costello (2005)

4.3.2 Principal axis factoring

o Uses “reduced” correlation matrix (R,.4,ccq)

— Diagonal of 1s replaced with communalities

* Why? More in a minute

e Perform PCA on reduced correlation matrix
o Iterate between loadings and correlation matrix until observed correlations and

model-implied correlations are sufficiently close

— What? More in a minute
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4.3.3 Maximum likelihood factor analysis

o Uses a weighted version of R, ceq
— Diagonal elements are divided by that item’s uniqueness (d,)

* Why? More in a minute

e Perform PCA on weighted reduced correlation matrix
o Iterate between loadings and correlation matrix until observed correlations and

model-implied correlations are sufficiently close

— What? More in a minute

4.3.4 Correlation matrix

1 rig mg T4 Tis T
Tor 1 Tag Tog Tos Tog
T3y Tzg 1 T34 Tgs Tg

R =
YY
Ty Tag Taz 1 Tus o Tug
Tsy Tsa Ts3 Tsa 1 Tsg
761 Te2 Te3 Tea Tes 1
2 -
81 S12 S13 S14 S15 Si6
2
21 S3 3223 S24 S25 So6
S _ |S31 S32 S3 S34 S35 S36
Yy — 2

S41 S42 S43 S 3425 S46
551 Ss2 Ss53 Ss4 Sp 5526
LS61 Se62 S63 Se4 S65 56

o Off-diagonal elements are common only
— Variables are related by what they have in common
¢ Diagonal involve both common and unique

— FA only cares about common factors
— Modify diagonal to make it common only

4.3.5 Principal axis factoring

[ /’% Ti2 T3 Tia Ti5 Tie
Ta1 h% T2z Toa T25 T26
r31 Tgp ! ’2; Tzq T35 T36
Ty Tao Tag | Ii T45 T
rsi Tsa Tsy Tsa D2 T's6

761 Te2 Te3 Tea Tes | 15 .

R

reduced —
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4.3.6 Principal axis factoring

¢ Elements on diagonal are initial communalities

— What each variable has in common with all other variables

— Squared multiple correlation (SMC) of that variable predicted by all other variables
« h? is the R2 for: Yy = by + b, Yy + byYs + b3¥, + b, Y5 + bs Y

multiple

4.3.7 Principal axis factoring

¢ Remember PCA?

— No measurement error
— Initial communalities = 1.00

x Using correlation matrix in PCA: 1s on diagonal
— So actually the same idea

x Diagonal is common variance only
x In PCA, everything is common variance

4.3.8 Principal axis factoring

e Perform a PCA on the reduced correlation matrix
e Pattern of eigenvalues will be similar for PCA and PAF

— Diagonal is reduced from all 1s to initial communalities
— Eigenvalues are similarly reduced
— Scree plot is the same shape, just shifted down for PAF

4.3.9 ML factor analysis

o Uses a weighted version of R,._;,ccq

— Weights each initial communality by the inverse of its uniquness
h? in PAF — "% in MLFA

Increases Values1 of main diagonal

— Eigenvalues are larger compared to PAF or PCA

— Scree plot can be different shape from PAF and PCA

18



4.3.10 Iterations in PAF and MLFA

e R, . iuceq tO estimated loadings: Al

— Loadings to estimated correlation matrix: R /;imateqar = A1A1

e R iimateqr tO estimated loadings: AQ

— Loadings to estimated correlation matrix: R, imateaz = AsAg
e R iimateqs 1O estimated loadings: A3
~ ~/
AzA;

— Loadings to estimated correlation matrix: R, imateds =

Repeat until the difference between estimated and observed correlation matrices is “small
enough”

4.3.11 Heywood cases

o The iterative process sometimes causes problems
— Heywood case = communality > 1 or loading > 1

e Causes: too few cases, bad start values, too many factors, too few factors, non-linear
relationships between factors

e Some solutions:

— Too few cases: drop items or add cases
— Bad start values: use highest correlation of item with a single other item instead
of SMC for initial communality

4.4 Summary
4.4.1 Summary

e EFA divides variance into

— Common (latent factors)
— Unique (error)

e Two approaches to estimating

— Principal axis factoring (PAF)
— Maximum likelihood (ML)

19



5 Number of factors and rotation

5.1 How many factors?
5.1.1 How many factors?

e Same options to pick number of factors as PCA

— Bad: Kaiser criteria

— Ok: Scree plot, proportion of variance accounted for
— Good: Parallel analysis, MAP test

— Also: Solution makes sense / theory

— For MLFA: chi-square test

5.1.2 Scree plots

2.5 PCA

Eigenvalue

Eigenvalue number

20



5.1.3 Kaiser criteria

2.5 PCA

Eigenvalue

Eigenvalue number

5.1.4 Parallel analysis in R

o PAF

21



Parallel Analysis Scree Plots
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Factor Number

Parallel analysis suggests that the number of factors = 2 and the number of components = |

« MLFA
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Parallel Analysis Scree Plots
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Parallel analysis suggests that the number of factors = 2 and the number of components = |

5.1.5 Parallel analysis in SPSS

e SPSS gives you the eigenvalues for the original correlation matrix, not the reduced one,
SO...

5.1.6 MAP test in R

e« PAF
— Error: “imaginary eigen value”
— No idea why

« MLFA
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Fun MATRIX procedure:

PARALLEL ANALYSIS:

Principal Axis / Common Factor Analysis

Specifications for this Run:

Neases 1000
Nvars 6
Ndatsets 1000
FPercent 95
FRandom Data Eigenvalues
Root Means Frcntyle
1.000000 .112143 .157845
2.000000 .059266 .092854
3.000000 .020263 .04488%¢
4.000000 -.014555 .005881
5.000000 -.051e02 -. 0286958
6.000000 -.085223 —.0edB47
Total Variance Explained
Initial Eigenvalues Extraction Sums oquuared Lca-dings
Factor Tgal—--. % of Variance Cumulative % Total % of Variance Cumulative %
1 2.490 \ 41.506 41.506 1.999 33.309 33.309
2 / 1.537 25612 67.118 1.043 17.383 50.691
3 ] 528 8.806 75.924
4 499 8.315 84.239
] \ 482 8.027 92.267
6 \ 464 / 7.733 100.000

Extraction Method:

ncipal Axis Factoring.
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i Very Simple Structure Complexity

(O]

3 _ .
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O To}

2 x =

g g = °

= = nd

g ~ @ = /.

w © t I I I I S T t t t I

1 2 3 4 5 6 1 2 3 4 5 6

Number of factors Number of factors

Number of factors
Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,
n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of Although the vss.max shows b5 factors, it is probal
VSS complexity 2 achieves a maximimum of 0.85 with 3 factors
The Velicer MAP achieves a minimum of 0.1 with 2 factors
Empirical BIC achieves a minimum of -26.76 with 2 factors
Sample Size adjusted BIC achieves a minimum of -13.16 with 2 factors

Statistics by number of factors

vssl vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex
1 0.56 0.00 0.12 9 5.8e+02 3.1e-118 4.2 0.56 0.25 514 542 1.0
2 0.79 0.85 0.10 4 1.8e+00 7.8e-01 1.5 0.85 0.00 -26 -13 1.1
3 0.69 0.85 0.22 0 2.8e-02 NA 1.1 0.88 NA NA NA 1.3
4 0.79 0.85 0.42 -3 1.6e-09 NA 1.4 0.86 NA NA NA 1.1
50.79 0.84 1.00 -5 0.0e+00 NA 1.4 0.86 NA NA NA 1.1
6 0.75 0.81 NA -6 2.6e+01 NA 1.8 0.81 NA NA NA 1.1

eChisq SRMR eCRMS eBIC
1 1.0e+03 1.8e-01 0.24 940
2 8.7e-01 5.4e-03 0.01 -27
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3 1.7e-02 7.5e-04 NA NA
4 8.5e-10 1.7e-07 NA NA
5 2.7e-16 9.5e-11 NA NA
6 3.6e+01 3.4e-02 NA NA

5.1.7 MAP test in SPSS

Run MATRIX procedure:

Velicer's Minimum Average Partial (MAP) Test:

Eigenvalues
2.4504
1.5387
.5284
L4989
L4816
L4640
Average Partial Correlations
sguared powerd
-0000 1180 0268
1.0000 1248 L0223
2.0000 .1003 .0250
3.0000 .21586 .1155
4.0000 L4226 .2868
5.0000 1.0000 1.0000

The smallest average squared partial correlation 1is
.1003

The smallest average 4rth power partial correlation is
.0223
The Number of Components According to the Original (1%76) MAF Test is

The Number of Components According to the Revised (2000) MAFP Test is

5.1.8 Chi-square test: ML only

e Null hypothesis: This number of factors is sufficient
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o Alternative hypothesis: Need more factors
« R

“The total number of observations was 1000 with Likelihood Chi Square = 1.77 with prob <
0.78”

Factor Analysis using method = ml
Call: fa(r = FA_data, nfactors = 2, rotate = "none", SMC = TRUE, warnings = TRUE,
fm = "ml")

Standardized loadings (pattern matrix) based upon correlation matrix
ML1 ML2 h2 u2 com

x1 0.52 0.44 0.46 0.54 1.9
x2 0.58 0.44 0.53 0.47 1.9
x3 0.53 0.46 0.50 0.50 2.0
x4 0.62 -0.40 0.54 0.46 1.7
x5 0.62 -0.35 0.50 0.50 1.6
x6 0.59 -0.41 0.51 0.49 1.8

ML1 ML2
SS loadings 2.00 1.04
Proportion Var 0.33 0.17
Cumulative Var 0.33 0.51

Proportion Explained 0.66 0.34
Cumulative Proportion 0.66 1.00

Mean item complexity = 1.8
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 15 and the objective function was
The degrees of freedom for the model are 4 and the objective function was O

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.01

1.49 with

The harmonic number of observations is 1000 with the empirical chi square 0.87 with prob
The total number of observations was 1000 with Likelihood Chi Square = 1.77 with prob <

Tucker Lewis Index of factoring reliability = 1.006

RMSEA index = 0O and the 90 % confidence intervals are 0 0.032
BIC = -25.86

Fit based upon off diagonal values =1

Measures of factor score adequacy
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ML1 ML2
Correlation of (regression) scores with factors 0.90 0.82

Multiple R square of scores with factors 0.80 0.68
Minimum correlation of possible factor scores 0.61 0.36
o SPSS

Goodness-of-fit Test
Chi-Square df Sig.
1.769 4 gr8

5.2 Rotation
5.2.1 Rotated solutions

e Same purpose for rotation
— Make the solution more interpretable and clean
e Same options for rotation in EFA as in PCA

— Orthogonal rotation: varimax
— Oblique rotation: oblimin, promax

6 Conclusion

6.1 Summary of this week
6.1.1 Summary of this week

o Factor analysis (FA)

— Reduce # of variables (from p variables to < p factors)

— Loadings relate items to factors

— Communalities are how much variance in each item is explained by latent factors
— Focus on common variance due to latent factor

* Also measurement error
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