
Multivariate: Factor analysis
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1 Goals

1.1 Goals

1.1.1 Goals of this lecture

• Factor analysis (FA)

– Dimension reduction: reduce number of variables

• A large set of (potentially correlated) observed variables

– Organize the covariance in those variables to a smaller set of orthogonal (uncor-
related) variables

• Similar to PCA but

– Assumptions of FA are closer to what we expect in psychology

2 PCA vs FA

2.1 Statistical measurement

2.1.1 Measuring things is hard

• Psychology: we cannot directly measure some constructs

– No ruler to measure “intelligence” or “introversion”

• We can indirectly measure what we really want to measure

– Want to measure intelligence
∗ Math ability, verbal ability, spatial ability, reasoning, general knowledge, etc.

– Intelligence is a latent variable
∗ Not directly observed

2.1.2 Formative vs reflective latent variables

• Formative factor

• Reflective factor
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Life events

X2X1 X3

Intelligence

Y2Y1 Y3

2.1.3 Measurement theory

• Psychometric theory: Latent variable is “true score”

• Observed score (𝑌 ) is a function of true score and error

– True score is “real” score assuming no error (latent variable)
– Error can be measurement error or random error

2.1.4 Measurement theory

• Observed score: 𝑌𝑖 = 𝑇𝑖 + 𝑒𝑖𝑗

– True score (latent variable): 𝑇𝑖
– Error: 𝑒𝑖𝑗

• Variance of score:

– 𝑉 𝑎𝑟(𝑌𝑖) = 𝑉 𝑎𝑟(𝑇𝑖) + 𝑉 𝑎𝑟(𝑒𝑖𝑗)
– (Assuming no covariance between true score and error, which we do assume)
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2.1.5 Measurement theory

• 𝑌𝑖 = 𝑇𝑖 + 𝑒𝑖𝑗

• FA partitions variance in each item into

– Common portion: due to latent factors / true scores
– Unique portion: due to error

• Big idea in factor analysis: Any correlations between items are due to what they have
in common (i.e. a common latent factor)

2.1.6 Measurement theory

Intelligence

Y2Y1 Y3

2.2 Differences between PCA and FA

2.2.1 Similar models, important differences

• Both PCA and FA are data reduction methods

– You have many variables
– You want to describe them using fewer dimensions

• Both PCA and FA are also latent variable methods

– You have observed variables
– They’re related to unobserved (latent) variables

• Beyond that, several important theoretical and statistical differences
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2.2.2 Common and unique variance

• PCA: All variance is explained by latent variables

– If you retained all components, you’d perfectly re-create the observed variables
– Initial communalities = 1.00

• FA: Variance is divided into common and unique (error)

– Even if you retained all factors, there’s still measurement error
– Latent variables never explain all variance in observed
– Initial communalities < 1.00

2.2.3 Causal ordering

• PCA: Observed variables cause latent variables

– Latent variable is linear combination of observed

• FA: Latent variables cause responses on observed variables

– Latent variable is a trait that causes a person to respond to the observed variables
in a certain way

2.2.4 Variance or covariance / correlation?

• PCA: Partitions variance in each variable

– Correlation / covariance largely ignored
– Variables don’t even need to be correlated

• FA: Partitions variance, but in the service of splitting into common and unique
portion

– Correlations between variables define “common variance”
– Variables related to the same factor are correlated

2.3 Summary

2.3.1 Summary

• Factor analysis and PCA are similar

– FA assumes measurement error
– FA assumes latent factors cause responses

∗ FA relies on correlations to get at this
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3 Data Example

3.1 Measure and variables

3.1.1 Simulated data

• Similar to previous data

– 1000 subjects
– 6 continuous variables

• Covariance matrix

x1 x2 x3 x4 x5 x6
x1 1.871 0.912 0.944 0.312 0.344 0.226
x2 0.912 1.830 0.994 0.367 0.385 0.315
x3 0.944 0.994 2.059 0.287 0.362 0.267
x4 0.312 0.367 0.287 2.150 1.112 1.091
x5 0.344 0.385 0.362 1.112 2.117 1.041
x6 0.226 0.315 0.267 1.091 1.041 2.016

• Color-coded correlation matrix
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3.1.2 Observed and latent variables

• Observed variables

– 6 variables
– These are all 𝑌 variables: they are predicted by the latent variables

• Latent variables

– These are the 𝑋 variables
– They are the factors
– We create them in the analysis

3.2 Output of the analysis

3.2.1 Data reduction

• The idea behind FA is to reduce the number of variables
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– Start with 6 items
∗ Want fewer than 6 factors
∗ How many fewer?

• I simulated the data to have 2 “clumps”

– We talked about this the past few weeks
– So I’ll show you a 2 factor model to start

3.2.2 FA results

1. Loadings

• Relation between latent factor (𝑋) and observed variable (𝑌 )
– Matrix with rows = # items, columns = # factors
– High loading = that 𝑋 is highly related to that 𝑌

• Think: correlation or standardized regression coefficient
– Range from -1 to 1

3.2.3 Model results: Loadings in R

Loadings:
PA1 PA2

x1 0.535 0.422
x2 0.590 0.420
x3 0.549 0.446
x4 0.605 -0.417
x5 0.607 -0.368
x6 0.573 -0.424

PA1 PA2
SS loadings 1.999 1.043
Proportion Var 0.333 0.174
Cumulative Var 0.333 0.507
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3.2.4 Model results: Loadings in SPSS

3.2.5 Loadings

−1 1

−1

1

x1x2x3

x4
x5

x6

3.2.6 Simple structure and rotation

• Solution has simple structure if each item has high loadings on only one factor and
near zero loadings on all other factor

– i.e., points are near the axes
– Easier to interpret: items only relate to one axis

• Rotated solution rotates the axes to get closer to simple structure

– We’ll look at some different ways to rotate the solution
∗ Conceptual version now

– Easier to interpret a solution that has simple structure
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3.2.7 Loadings on rotated axes

−1 1
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x1x2x3
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x5

x6

3.2.8 FA results

2. Communalities

• Remember that we don’t retain all the factors
• Communalities are the proportion of variance in 𝑌 that’s explained by the factors

(𝑋) that you do retain
• Think: 𝑅2

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 for 𝑋s predicting 𝑌 s
– This is the normal order (unlike PCA): 𝑋 predicts 𝑌

3.2.9 Model results: Communalities in R

x1 x2 x3 x4 x5 x6
0.4635790 0.5250197 0.5010631 0.5416307 0.5028439 0.5079958
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3.2.10 Model results: Communalities in SPSS

3.2.11 FA overview

• Loadings tell us how items are correlated with factors

– Simple structure makes loadings more interpretable
– Use rotation to try to get simple structure

• Communalities tell us how much variance in the items is explained by the factors we
kept

4 FA details

4.1 Exploratory vs confirmatory

4.1.1 Exploratory vs confirmatory FA

• Two kinds of factor analysis
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– Obviously related, but also different models

1. Exploratory factor analysis (EFA) in this course

• It is a “classic multivariate technique”

2. Confirmatory factor analysis (CFA) discussed briefly

• CFA falls under structural equation modeling (SEM)

4.1.2 Exploratory factor analysis (EFA)

• EFA explores the factor structure of the variables

– Largely atheoretical
– Discover how many factors may be present
– Few (if any) pre-conceptions about which items may have high or low loadings on

which factors

4.1.3 Confirmatory factor analysis (CFA)

• CFA confirms a pre-existing factor structure

– Requires theory to construct
– Hypothesize a specific number of factors
– Allow each item to load on only one factor

∗ All other loadings are 0

4.1.4 EFA vs CFA: matrix of loadings

• EFA

Item F1 F2 F3
1 0.618 0.094 -0.049
2 0.440 -0.075 0.065
3 0.671 0.037 0.041
4 0.031 0.731 -0.079
5 0.126 0.705 0.053
6 0.265 0.296 0.603
⋮ ⋮ ⋮ ⋮

• CFA
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Item F1 F2 F3
1 0.620 0 0
2 0.450 0 0
3 0.665 0 0
4 0 0.725 0
5 0 0.689 0
6 0 0 0.613
⋮ ⋮ ⋮ ⋮

• Zeroes are “fixed”: we specify that those loadings are 0 so don’t estimate them

4.2 FA model

4.2.1 FA model

𝑌𝑖 = 𝑇𝑖 + 𝑒𝑖𝑗

• FA partitions variance in each item into

– Common portion: due to latent factors / true scores
– Unique portion: due to error

• Big idea: Any correlations between items are due to what they have in common (i.e. a
common latent factor)

4.2.2 FA model

Intelligence

Y2Y1 Y3
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4.2.3 FA model

• Partition variance of each item into common and unique portions

– Common portion: due to latent factors
∗ Correlations between variables due to common latent factor

– Unique portion: Error (measurement or otherwise)

4.2.4 FA model

• There are 𝑝 variables (items) and 𝑚 factors
• R𝑌 𝑌 = AR𝐹 A′ + D2

– R𝑌 𝑌 = 𝑝 × 𝑝 matrix of observed item correlations
– A = 𝑝 × 𝑚 matrix of loadings
– R𝐹 = 𝑚 × 𝑚 matrix of correlations between factors
– D2 = 𝑝 × 𝑝 matrix of unique variances

4.2.5 Common variance portion

A R𝐹 A′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2
𝑎3,1 𝑎3,2
𝑎4,1 𝑎4,2
𝑎5,1 𝑎5,2
𝑎6,1 𝑎6,2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ 𝜎2
𝐹1

𝜎𝐹1𝐹2
𝜎𝐹2𝐹1

𝜎2
𝐹2

] [𝑎1,1 𝑎2,1 𝑎3,1 𝑎4,1 𝑎5,1 𝑎6,1
𝑎1,2 𝑎2,2 𝑎3,2 𝑎4,2 𝑎5,2 𝑎6,2

]

• The common (shared) portion of the variance involves the correlations among factors
(R𝐹 ) and the loadings (A)

4.2.6 Unique variance portion

• The matrix of “uniquenesses” is a diagonal matrix

– Items are related only through common factor
– There are no correlations between uniquenesses across variables
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D =

⎡
⎢⎢⎢⎢⎢
⎣

𝑑1 0 0 0 0 0
0 𝑑2 0 0 0 0
0 0 𝑑3 0 0 0
0 0 0 𝑑4 0 0
0 0 0 0 𝑑5 0
0 0 0 0 0 𝑑6

⎤
⎥⎥⎥⎥⎥
⎦

• 𝑑1 is the “uniqueness” for item 1

– 𝑑2
1 is the unique variance for item 1

4.3 Extraction methods

4.3.1 Extraction methods

• Two kinds of extraction (estimation) for EFA

1. Principal axis factoring (PAF), also called principal factor analysis
2. Maximum likelihood factor analysis (MLFA)

• Either method is fine, but use PAF if items are not normally distributed

– Fabrigar, Wegener, MacCallum, & Strahan (1999)
– Osborne & Costello (2005)

4.3.2 Principal axis factoring

• Uses “reduced” correlation matrix (R𝑟𝑒𝑑𝑢𝑐𝑒𝑑)

– Diagonal of 1s replaced with communalities
∗ Why? More in a minute

• Perform PCA on reduced correlation matrix
• Iterate between loadings and correlation matrix until observed correlations and

model-implied correlations are sufficiently close

– What? More in a minute
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4.3.3 Maximum likelihood factor analysis

• Uses a weighted version of R𝑟𝑒𝑑𝑢𝑐𝑒𝑑

– Diagonal elements are divided by that item’s uniqueness (𝑑𝑖)
∗ Why? More in a minute

• Perform PCA on weighted reduced correlation matrix
• Iterate between loadings and correlation matrix until observed correlations and

model-implied correlations are sufficiently close

– What? More in a minute

4.3.4 Correlation matrix

R𝑌 𝑌 =

⎡
⎢⎢⎢⎢⎢
⎣

1 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16
𝑟21 1 𝑟23 𝑟24 𝑟25 𝑟26
𝑟31 𝑟32 1 𝑟34 𝑟35 𝑟36
𝑟41 𝑟42 𝑟43 1 𝑟45 𝑟46
𝑟51 𝑟52 𝑟53 𝑟54 1 𝑟56
𝑟61 𝑟62 𝑟63 𝑟64 𝑟65 1

⎤
⎥⎥⎥⎥⎥
⎦

S𝑌 𝑌 =

⎡
⎢⎢⎢⎢⎢
⎣

𝑠2
1 𝑠12 𝑠13 𝑠14 𝑠15 𝑠16

𝑠21 𝑠2
2 𝑠23 𝑠24 𝑠25 𝑠26

𝑠31 𝑠32 𝑠2
3 𝑠34 𝑠35 𝑠36

𝑠41 𝑠42 𝑠43 𝑠2
4 𝑠45 𝑠46

𝑠51 𝑠52 𝑠53 𝑠54 𝑠2
5 𝑠56

𝑠61 𝑠62 𝑠63 𝑠64 𝑠65 𝑠2
6

⎤
⎥⎥⎥⎥⎥
⎦

• Off-diagonal elements are common only

– Variables are related by what they have in common

• Diagonal involve both common and unique

– FA only cares about common factors
– Modify diagonal to make it common only

4.3.5 Principal axis factoring

R𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =

⎡
⎢⎢⎢⎢⎢
⎣

ℎ2
1 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16

𝑟21 ℎ2
2 𝑟23 𝑟24 𝑟25 𝑟26

𝑟31 𝑟32 ℎ2
3 𝑟34 𝑟35 𝑟36

𝑟41 𝑟42 𝑟43 ℎ2
4 𝑟45 𝑟46

𝑟51 𝑟52 𝑟53 𝑟54 ℎ2
5 𝑟56

𝑟61 𝑟62 𝑟63 𝑟64 𝑟65 ℎ2
6

⎤
⎥⎥⎥⎥⎥
⎦
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4.3.6 Principal axis factoring

• Elements on diagonal are initial communalities

– What each variable has in common with all other variables
– Squared multiple correlation (SMC) of that variable predicted by all other variables

∗ ℎ2
1 is the 𝑅2

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 for: ̂𝑌1 = 𝑏0 + 𝑏1𝑌2 + 𝑏2𝑌3 + 𝑏3𝑌4 + 𝑏4𝑌5 + 𝑏5𝑌6

4.3.7 Principal axis factoring

• Remember PCA?

– No measurement error
– Initial communalities = 1.00

∗ Using correlation matrix in PCA: 1s on diagonal
– So actually the same idea

∗ Diagonal is common variance only
∗ In PCA, everything is common variance

4.3.8 Principal axis factoring

• Perform a PCA on the reduced correlation matrix
• Pattern of eigenvalues will be similar for PCA and PAF

– Diagonal is reduced from all 1s to initial communalities
– Eigenvalues are similarly reduced
– Scree plot is the same shape, just shifted down for PAF

4.3.9 ML factor analysis

• Uses a weighted version of R𝑟𝑒𝑑𝑢𝑐𝑒𝑑

– Weights each initial communality by the inverse of its uniquness
– ℎ2

1 in PAF → ℎ2
1

𝑑2
1

in MLFA
– Increases values of main diagonal
– Eigenvalues are larger compared to PAF or PCA
– Scree plot can be different shape from PAF and PCA
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4.3.10 Iterations in PAF and MLFA

• R𝑟𝑒𝑑𝑢𝑐𝑒𝑑 to estimated loadings: Â1

– Loadings to estimated correlation matrix: R𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑1 = Â1Â
′
1

• R𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑1 to estimated loadings: Â2

– Loadings to estimated correlation matrix: R𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑2 = Â2Â
′
2

• R𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑2 to estimated loadings: Â3

– Loadings to estimated correlation matrix: R𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑3 = Â3Â
′
3

• Repeat until the difference between estimated and observed correlation matrices is “small
enough”

4.3.11 Heywood cases

• The iterative process sometimes causes problems

– Heywood case = communality > 1 or loading > 1

• Causes: too few cases, bad start values, too many factors, too few factors, non-linear
relationships between factors

• Some solutions:

– Too few cases: drop items or add cases
– Bad start values: use highest correlation of item with a single other item instead

of SMC for initial communality

4.4 Summary

4.4.1 Summary

• EFA divides variance into

– Common (latent factors)
– Unique (error)

• Two approaches to estimating

– Principal axis factoring (PAF)
– Maximum likelihood (ML)
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5 Number of factors and rotation

5.1 How many factors?

5.1.1 How many factors?

• Same options to pick number of factors as PCA

– Bad: Kaiser criteria
– Ok: Scree plot, proportion of variance accounted for
– Good: Parallel analysis, MAP test
– Also: Solution makes sense / theory
– For MLFA: chi-square test

5.1.2 Scree plots
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5.1.3 Kaiser criteria
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5.1.4 Parallel analysis in R

• PAF
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Parallel analysis suggests that the number of factors = 2 and the number of components = NA

• MLFA
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Parallel analysis suggests that the number of factors = 2 and the number of components = NA

5.1.5 Parallel analysis in SPSS

• SPSS gives you the eigenvalues for the original correlation matrix, not the reduced one,
so…

5.1.6 MAP test in R

• PAF

– Error: “imaginary eigen value”
– No idea why

• MLFA
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Root Mean Residual

Number of factors

S
R

M
R

Number of factors
Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,

n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of Although the vss.max shows 5 factors, it is probably more reasonable to think about 2 factors
VSS complexity 2 achieves a maximimum of 0.85 with 3 factors
The Velicer MAP achieves a minimum of 0.1 with 2 factors
Empirical BIC achieves a minimum of -26.76 with 2 factors
Sample Size adjusted BIC achieves a minimum of -13.16 with 2 factors

Statistics by number of factors
vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex

1 0.56 0.00 0.12 9 5.8e+02 3.1e-118 4.2 0.56 0.25 514 542 1.0
2 0.79 0.85 0.10 4 1.8e+00 7.8e-01 1.5 0.85 0.00 -26 -13 1.1
3 0.69 0.85 0.22 0 2.8e-02 NA 1.1 0.88 NA NA NA 1.3
4 0.79 0.85 0.42 -3 1.6e-09 NA 1.4 0.86 NA NA NA 1.1
5 0.79 0.84 1.00 -5 0.0e+00 NA 1.4 0.86 NA NA NA 1.1
6 0.75 0.81 NA -6 2.6e+01 NA 1.8 0.81 NA NA NA 1.1

eChisq SRMR eCRMS eBIC
1 1.0e+03 1.8e-01 0.24 940
2 8.7e-01 5.4e-03 0.01 -27
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3 1.7e-02 7.5e-04 NA NA
4 8.5e-10 1.7e-07 NA NA
5 2.7e-16 9.5e-11 NA NA
6 3.6e+01 3.4e-02 NA NA

5.1.7 MAP test in SPSS

5.1.8 Chi-square test: ML only

• Null hypothesis: This number of factors is sufficient

26



• Alternative hypothesis: Need more factors

• R

“The total number of observations was 1000 with Likelihood Chi Square = 1.77 with prob <
0.78”

Factor Analysis using method = ml
Call: fa(r = FA_data, nfactors = 2, rotate = "none", SMC = TRUE, warnings = TRUE,

fm = "ml")
Standardized loadings (pattern matrix) based upon correlation matrix

ML1 ML2 h2 u2 com
x1 0.52 0.44 0.46 0.54 1.9
x2 0.58 0.44 0.53 0.47 1.9
x3 0.53 0.46 0.50 0.50 2.0
x4 0.62 -0.40 0.54 0.46 1.7
x5 0.62 -0.35 0.50 0.50 1.6
x6 0.59 -0.41 0.51 0.49 1.8

ML1 ML2
SS loadings 2.00 1.04
Proportion Var 0.33 0.17
Cumulative Var 0.33 0.51
Proportion Explained 0.66 0.34
Cumulative Proportion 0.66 1.00

Mean item complexity = 1.8
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 15 and the objective function was 1.49 with Chi Square of 1483.93
The degrees of freedom for the model are 4 and the objective function was 0

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 1000 with the empirical chi square 0.87 with prob < 0.93
The total number of observations was 1000 with Likelihood Chi Square = 1.77 with prob < 0.78

Tucker Lewis Index of factoring reliability = 1.006
RMSEA index = 0 and the 90 % confidence intervals are 0 0.032
BIC = -25.86
Fit based upon off diagonal values = 1
Measures of factor score adequacy
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ML1 ML2
Correlation of (regression) scores with factors 0.90 0.82
Multiple R square of scores with factors 0.80 0.68
Minimum correlation of possible factor scores 0.61 0.36

• SPSS

5.2 Rotation

5.2.1 Rotated solutions

• Same purpose for rotation

– Make the solution more interpretable and clean

• Same options for rotation in EFA as in PCA

– Orthogonal rotation: varimax
– Oblique rotation: oblimin, promax

6 Conclusion

6.1 Summary of this week

6.1.1 Summary of this week

• Factor analysis (FA)

– Reduce # of variables (from 𝑝 variables to < 𝑝 factors)
– Loadings relate items to factors
– Communalities are how much variance in each item is explained by latent factors
– Focus on common variance due to latent factor

∗ Also measurement error
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