Multivariate: MANOVA and repeated measures ANOVA

Table of contents

1	Goals	1
	1.1 Goals	. 1
2	MANOVA	2
	2.1 Univariate to multivariate	. 2
	2.2 MANOVA model	. 5
	2.3 Summary and alternatives	. 10
3	Repeated measures ANOVA	11
	3.1 Overview / review	. 11
	3.2 Univariate RM ANOVA	. 14
	3.3 Multivariate RM ANOVA	. 18
	3.4 Summary and comparison	. 20
4	Summary	21
	4.1 Summary	. 21

1 Goals

1.1 Goals

1.1.1 Goals of this section

- Multiple measures of the same thing or related things as an outcome
 - Possibly over time
- Want the variables **separate**: Not PCA / FA

- In this section:
 - MANOVA (this week)
 - Repeated measures ANOVA (this week)
 - Mixed models (next week)
 - Mediation (2 weeks)

1.1.2 Goals of this lecture

- Multivariate Analysis of Variance (MANOVA)
 - Outcome is **multivariate**: Several outcome variables
- Repeated measures ANOVA (RM ANOVA)
 - Univariate: *Single* outcome variable, measured multiple times
 - Multivariate: *Multiple* outcome variables
- Punchline: MANOVA is almost never a good choice
 - But multivariate RM ANOVA is a decent approach

2 MANOVA

2.1 Univariate to multivariate

2.1.1 Extending ANOVA to multiple outcomes

- Frequently interested in more than 1 outcome at a time
 - Anxiety
 - * Test anxiety, minor stressor anxiety, general anxiety
 - Children's school achievement
 - * Reading ability, reasoning ability, math ability
 - Performance on a task
 - $\ast\,$ Speed and accuracy

2.1.2 Could do GLM on each outcome but...

- ...you (often) shouldn't
 - Inflated type I error due to multiple tests on *correlated* outcomes
 - Sometimes only the **combination** of the outcomes shows an effect
 - Ignore relations between DVs

2.1.3 Structure of this section

- Review (univariate) between-subjects ANOVA
 - One outcome
- Extend to multivariate version
 - Multiple related outcomes

2.1.4 Univariate analysis of variance (ANOVA)

- Independent variables (IVs) are **categorical groups**
 - e.g., treatment and control
- Independent variables are called **factors**
 - Not to be confused with latent factors
- Single outcome variable (DV)
 - Continuous, normally distributed

2.1.5 ANOVA hypotheses are about the means

- One factor ANOVA
 - -k levels of the independent variable
 - Null hypothesis: All k group means are equal
 - $* \ H_0: \mu_1=\mu_2=\dots=\mu_k$

2.1.6 ANOVA hypotheses are about the means

- Two factor ANOVA
 - -k levels of one IV, m levels of other IV
 - 3 null hypotheses
 - $\ast\,$ Main effect 1: All k means across factor 1 are equal
 - $\ast\,$ Main effect 2: All m means across factor 2 are equal
 - * Interaction: All cell means are equal

2.1.7 Partitioned variation

- Partition the variation in scores into:
 - between-subject portion (group differences, $SS_{between})$
 - within-subject portion (error, SS_{within})

$$-SS_{total} = SS_{between} + SS_{within}$$

- Calculate based on observed scores, group means, grand mean
 - $X_{fi} =$ score for subject f in condition i

 - $-\bar{T}_i = \text{mean for scores in condition } i$ $-\bar{G} = \text{grand mean of all scores in the study}$

2.1.8 Partitioned variation

• Between group variation:

$$\begin{split} SS_{between} &= n\Sigma(\bar{T}_i-\bar{G})^2 = \\ n[(\bar{T}_1-\bar{G})^2+(\bar{T}_2-\bar{G})^2+\cdots+(\bar{T}_k-\bar{G})^2] \end{split}$$

• Within group variation:

$$\begin{split} SS_{within} &= \Sigma (X_{fi} - \bar{T}_i)^2 = \\ (X_{1i} - \bar{T}_i)^2 + (X_{2i} - \bar{T}_i)^2 + \dots + (X_{ni} - \bar{T}_i)^2 \end{split}$$

2.1.9 Testing the hypothesis

$$\begin{split} MS_{between} &= \frac{SS_{between}}{k-1} \\ MS_{within} &= \frac{SS_{within}}{k(n-1)} \\ F &= \frac{MS_{between}}{MS_{within}} \end{split}$$

• Compare observed F to critical F(k-1, k(n-1))

- Significant test = at least one of the k groups is different from the other groups

2.2 MANOVA model

2.2.1 Multivariate analysis of variance (MANOVA)

- Independent variables are **categorical groups**
 - e.g., treatment and control
- Independent variables are called **factors**
 - Not to be confused with latent factors
- Multiple outcome variables
 - -p outcome variables
 - Continuous, normally distributed

2.2.2 What does MANOVA do with all those outcomes?

- MANOVA creates a linear combination of the *p* outcome variables
 - Constructed to *separate* the k groups as much as possible
 - "Maximally discriminating linear combination"
- Look for group differences on the linear combination
- If you can't find differences on the **maximally discriminating linear combination** of all the DVs, then there really really aren't group differences on the DVs

2.2.3 MANOVA questions

- Do the groups differ at all?
 - On the maximally discriminating linear combination
- If yes, post hoc:
 - Which DVs have groups differences?
 - Which groups differ on those DVs?

2.2.4 Covariation matrix of outcomes P

- Covariation matrix of the p DVs: $p \times p$ matrix
 - Multivariate extension of SS_{total}
- Just like ANOVA: Partitions into between (\mathbf{H}) and within (\mathbf{E})

$$\mathbf{P} = \begin{bmatrix} SS_1 & SP_{12} & \cdots & SP_{1p} \\ SP_{21} & SS_2 & \cdots & SP_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ SP_{p1} & SP_{p2} & \cdots & SS_p \end{bmatrix}$$

2.2.5 Hypothesis matrix H

- Multivariate extension of $SS_{between}$: $p \times p$ matrix
 - Diagonal: between-group variation of each DV
 - Off-diagonal: covariation between means for pairs of DVs

$$\mathbf{H} = \begin{bmatrix} SS_{H,1} & SP_{H,12} & \cdots & SP_{H,1p} \\ SP_{H,21} & SS_{H,2} & \cdots & SP_{H,2p} \\ \vdots & \vdots & \ddots & \vdots \\ SP_{H,p1} & SP_{H,p2} & \cdots & SS_{H,p} \end{bmatrix}$$

2.2.6 Aside: H matrix for two-factor MANOVA

- For a one-factor MANOVA, there is a single H matrix
- For a two-factor MANOVA, there is a single H matrix
 - BUT it can be further partitioned into 3 matrices reflecting:
 - * Main effect 1
 - * Main effect 2
 - * Interaction effect

2.2.7 Error matrix E

- Multivariate extension of SS_{within} : $p \times p$ matrix
 - Diagonal: within-group **variation** of each DV, added across k grp
 - Off-diagonal: error **covariation**, added across k groups

• No between-group information in this matrix

$$\mathbf{E} = \begin{bmatrix} SS_{E,1} & SP_{E,12} & \cdots & SP_{E,1p} \\ SP_{E,21} & SS_{E,2} & \cdots & SP_{E,2p} \\ \vdots & \vdots & \ddots & \vdots \\ SP_{E,p1} & SP_{E,p2} & \cdots & SS_{E,p} \end{bmatrix}$$

2.2.8 Partitioned variation

• ANOVA

$$-SS_{total} = SS_{between} + SS_{within}$$

- MANOVA
 - Total variation = between-group variation + within-group variation
 - One factor: $\mathbf{P}=\mathbf{H}+\mathbf{E}$
 - Two factor: $\mathbf{P} = \mathbf{H}_{factor1} + \mathbf{H}_{factor2} + \mathbf{H}_{factor1*factor2} + \mathbf{E}$

2.2.9 Multivariate hypothesis tests (omnibus)

- ANOVA
 - Divide SS by their degrees of freedom to produce MS (variances)
 - F-statistic is ratio of MSs (variances)
- MANOVA
 - Use matrix equivalent of variance: Determinant
 - * Determinant is "generalized variance" for a matrix
 - Create analogues to *F*-statistics
 - Unfortunately, it's not straight-forward

2.2.10 Multivariate hypothesis tests

- Four commonly used multivariate tests
 - Different ratio of determinants or eigenvalues
- Wilks' lambda: within / total
- Pillai's trace: between / total
- Hotelling's trace: between / within
- Roy's largest characteristic root: between / total

2.2.11 Wilks' lambda

•
$$\Lambda = \frac{|\mathbf{E}|}{|\mathbf{H} + \mathbf{E}|} = \frac{|\mathbf{E}|}{|\mathbf{P}|}$$

– where $|\mathbf{E}|$ is the determinant of \mathbf{E}

+ H_0 : no between-group variation, so **H** is all zeroes and ratio is 1

– As group differences increase, $\Lambda \to 0$

- Effect size = eta squared = $\eta^2 = 1 \Lambda$
 - $-\eta^2$ = variance accounted for by the best linear combination of DVs

2.2.12 Pillai's trace

- Pillai's trace = $trace \left[\mathbf{H}(\mathbf{H} + \mathbf{E})^{-1}\right]$
 - where the trace of a matrix is the sum of the diagonal elements
- Conceptually:
 - Matrix representing proportion of variation that is between-group
 - Sum of *eigenvalues* from that matrix

2.2.13 Hotelling's trace

- Hotelling's trace = $trace \left[\mathbf{H}(\mathbf{E})^{-1} \right]$
 - where the trace of a matrix is the sum of the diagonal elements
- Conceptually:
 - Matrix representing ratio of between- to within-group variation
 - Sum of *eigenvalues* from that matrix

2.2.14 Roy's largest characteristic root

- Roy's greatest characteristic root = first eigenvalue of $\mathbf{H}(\mathbf{H} + \mathbf{E})^{-1}$
- Conceptually:
 - Matrix representing proportion of variation that is between-group
 - First eigenvalue from that matrix

2.2.15 Summary of multivariate tests

Test	Matrix	Range $(H_0 \text{ to } H_A)$	In words	Function
Wilks	E/T	1 to 0	Error proportion	Determinant
Pillai	H/T	0 to 1	Between proportion	Trace
Hotelling	H/E	0 to ∞	Between to within ratio	Trace
Roy	H/T	0 to 1	Between proportion	1st eigenvalue

These tests are similar, but they differ in terms of **power** and **robustness to violations** of assumptions

2.2.16 Assumptions of MANOVA

- GLM: Multivariate normality of outcomes, linearity, etc
- "Homogeneity of variance-covariance matrices"
 - Error matrix is same in all groups and **E** is average
 - Multivariate extension of homogeneity of variance assumption
- Box's M test to test this assumption
 - Significant test means that assumption is violated
 - Sensitive: use p<.001, ignore unless $n{\rm s}$ very different across groups

2.2.17 Which test should I use???

- One factor MANOVA with k = 2 groups: All tests are identical
- **Recommended**: Pillai's trace
 - Robust to assumptions, powerful when DVs not highly corr
- Recommended: Wilks' lambda
 - Good power, relatively robust when assumptions probably met
- Maybe use: Roy's greatest characteristic root
 - Powerful when DVs highly corr, not robust to assumptions
- Not recommended: Hotelling's trace
 - OK when sample size is very large

2.3 Summary and alternatives

2.3.1 MANOVA

- Extends ANOVA to multiple outcomes
 - Many omnibus test options
 - Many follow-up options
 - Maximally discriminating linear combination?
 - Missing data, ANOVA framework only, time
- Quantitude says MANOVA must die

2.3.2 MANOVA questions

- Do the groups differ at all (on max discriminating linear comb.)?
 - This is what Pillai's trace, etc are testing
- If yes, post hoc:
 - Which DVs have groups differences?
 - Which groups differ on those DVs?
 - Enders, C. K. (2003). Performing multivariate group comparisons following a statistically significant MANOVA. Measurement and Evaluation in Counseling and Development, 36, 40-56.

2.3.3 When to use MANOVA?

- DVs are highly negatively correlated
 - Time to complete a task and number of errors on task
- DVs are **all moderately correlated** in either direction
 - Around ± 0.6 correlation
 - Not really high enough to support a latent factor
 - Repeated measures

2.3.4 When not to use MANOVA?

- DVs are not really correlated
 - MANOVA is unnecessarily complicated and wasteful
 - You don't gain anything by analyzing them together
- DVs are all highly positively correlated
 - MANOVA is unnecessarily complicated and wasteful
 - The variables are all basically the same thing

2.3.5 Alternatives to MANOVA

- Repeated-measures DVs:
 - Repeated measures ANOVA
 - Mixed / multilevel / hierarchical linear models
 - Latent growth models
- Separate univariate ANOVAs: esp uncorrelated DVs
- SEM / path model with multiple DVs
- Latent factor: esp highly *correlated* DVs

3 Repeated measures ANOVA

3.1 Overview / review

3.1.1 Between-subjects ANOVA

- Different subjects in each condition or cell of the design
 - 2 dimensions: subjects and variables

subject	$\operatorname{condition}$	outcome
1	1	3
2	1	4
3	1	3
4	2	5
5	2	3
6	2	3
7	3	1

subject	$\operatorname{condition}$	outcome
8	3	2
9	3	4

3.1.2 Between-subjects ANOVA: Partitioning

- Partition the variation in scores into:
 - between-subject portion (group differences, $SS_{between}$)
 - within-subject portion (error, SS_{within})
 - $-SS_{total} = SS_{between} + SS_{within}$

3.1.3 Repeated-measures

- 1. Measure the same DV over time
 - e.g., anxiety level at 1 wk intervals after starting medication
- 2. Measure the same DV in each of a set of related conditions
 - e.g., anxiety level after CBT, after medication, etc.
- Multiple outcome measures that are **related**
 - Measured on the same person (not independent)
 - MANOVA: **related** dependent variables

3.1.4 Repeated-measures ANOVA

- Subjects are repeatedly measured / same subject in all conditions
 - -3 dimensions: subjects, variables (Y_1) , treatment or time (T)

subject	$Y1_T1$	$Y1_T2$	$Y1_T3$	$Y1_T4$
1	3	1	2	5
2	4	5	1	3
3	3	3	3	3
4	5	2	4	2
5	3	4	4	5
6	3	3	4	4
7	1	1	4	5
8	2	5	2	1
9	4	4	5	2

3.1.5 Two ways to do repeated-measures ANOVA

- Univariate:
 - Standard repeated measures ANOVA
 - Treats the outcome as **one variable** that is **measured repeatedly**
- Multivariate:
 - Treats the outcome as a **multivariate outcome**
 - * Single outcome made up of several (related) variables
 - \cdot Sound familiar?

3.1.6 Univariate: *n* subjects, *k* repeated measures

- Single outcome variable Y
 - "Univariate"
- T (time or treatment) is a predictor
 - Specific levels: $1, 2, \ldots, k$
- Also called "tall" or "stacked" data format
 - Used in mixed models (next week)

3.1.7 Univariate: *n* subjects, *k* repeated measures

subject	T	Y
1	1	Y_{11}
1	2	Y_{12}
1	÷	÷
1	k	Y_{1k}
2	1	Y_{21}
2	2	Y_{22}
2	÷	÷
2	k	Y_{2k}
:	3	:
n	1	Y_{n1}
n	2	Y_{n2}
n	÷	:
n	k	Y_{nk}

3.1.8 Multivariate: *n* subjects, *k* repeated measures

- Several related outcome variables Y
 - "Multivariate"
- T (time or treatment) is not an explicit predictor
 - Treated like waves
- Also called "wide" data format
 - Used in MANOVA

3.1.9 Multivariate: n subjects, k repeated measures

$\operatorname{subject}$	$Y1_T1$	$Y1_T2$	•••	$Y1_T4$
1	Y_{11}	Y_{12}		Y_{1k}
2	Y_{21}	Y_{22}		Y_{2k}
3	Y_{31}	Y_{32}		Y_{3k}
:	÷	:	·.	:
n	Y_{n1}	Y_{n2}		Y_{nk}

3.2 Univariate RM ANOVA

3.2.1 Univariate approach to repeated measures

- Partition variation in scores into:
 - Between-subject variation
 - Within-subject variation, which is further partitioned into:
 - * Treatment (or time) effects for individuals
 - * Residual or random error

3.2.2 Univariate approach to repeated measures

- $Y_{ij} =$ score for person *i* at time or treatment *j*
- \bar{T}_j = mean score for treatment or time j
 - Up to k treatments or times
- \bar{P}_i = mean score for person i

- Up to n subjects
- $\bar{G} = \text{grand} \text{ mean of all scores}$

3.2.3 Between-subjects variation

• Individual subjects' variation around the grand mean

$$\begin{split} SS_{between\;subject} &= k\sum_{i=1}^n (\overline{P}_i - \overline{G})^2 \\ &= k[(\overline{P}_1 - \overline{G})^2 + (\overline{P}_2 - \overline{G})^2 + \dots + (\overline{P}_k - \overline{G})^2] \end{split}$$

- Similar to between-groups variation in ANOVA, but no groups here
 - People are "groups"

3.2.4 Within-subjects variation

- Individual subjects' variation around their mean
- For person i:

$$\begin{split} SS_{within\;person\;i} &= \sum_{j=1}^k (Y_{ij} - \overline{P}_i)^2 \\ &(Y_{i1} - \overline{P}_i)^2 + (Y_{i2} - \overline{P}_i)^2 + \dots + (Y_{ik} - \overline{P}_i)^2 \\ \bullet \text{ Add up across all } n \text{ subjects: } SS_{within\;subject} &= \sum_{i=1}^n \sum_{j=1}^k (Y_{ij} - \overline{P}_i)^2 \end{split}$$

3.2.5 Within-subjects variation

- Within-subjects variation = time (or treatment) + residual
- Time variation = timepoint mean variation around grand mean

$$\begin{split} SS_{time} &= n\sum_{j=1}^k (\overline{T}_j - \overline{G})^2 \\ &= n[(\overline{T}_1 - \overline{G})^2 + (\overline{T}_2 - \overline{G})^2 + \dots + (\overline{T}_k - \overline{G})^2] \end{split}$$

3.2.6 Within-subjects variation

- Within-subjects variation = time (or treatment) + residual
- Residual variation = any remaining variation

$$SS_{residual} = SS_{time \times subject} = SS_{within \ subject} - SS_{time}$$

3.2.7 Full partitioning of variation

• Keep in mind: No groups here at all

Source	SS	df	MS	F
Between	$SS_{between su}$	$n_{ubject}n-1$	$MS_{between so}$	ubject
-Time	$SS_{within\ sub} \\ SS_{time}$	bject $n(\kappa - 1)$ k - 1	$MS_{within\ sub}$ MS_{time}	$\frac{MS_{time}}{MS}$
-Residual	$SS_{residual}$	(n-1)(k-1)	$MS_{residual}$	$MD_{residual}$

 $SS_{total} = SS_{between \ subject} + SS_{time} + SS_{residual}$

3.2.8 Mixed effects ANOVA

- Between-subjects + within-subjects = "mixed ANOVA"
 - Unfortunate: too easy to confuse with "mixed models"
 - * Also have several other names: Next week
- You can have BOTH within and between subjects factors in ANOVA
 - e.g., group (between) and time (within)
- Also look at the interaction
 - Does time effect vary across groups? Or vice versa?

3.2.9 Assumptions of univariate RM ANOVA

• About the covariance matrix of the outcomes

$$\mathbf{S}_{YY} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ & & & \sigma_3^2 & \sigma_{34} \\ & & & & & \sigma_4^2 \end{bmatrix}$$

σ₁² = variance of outcome at time 1 / treatment 1
σ₁₂ = covariance between outcome at time / treatment 1 and outcome at time / treatment 2

3.2.10 Compound symmetry and sphericity

- Compound symmetry of the covariance matrix of outcomes
 - Homogeneity of variances (i.e., variances are all the same):

*
$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

- Homogeneity of covariances (i.e., covariances are all the same):

* $\sigma_{12} = \sigma_{13} = \sigma_{14} = \sigma_{23} = \sigma_{24} = \sigma_{34}$

- Actual assumption: Sphericity
 - Compound symmetry holds for **differences** between pairs of scores
 - Slightly weaker assumption

3.2.11 Plausibility of sphericity assumption

- T_1 through T_k are different trials or conditions in a single session
 - Sphericity may be plausible
- T_1 through T_k are different time points
 - Say, 9th, 10th, 11th, and 12th grades
 - Probably expect T1 and T2 to be more alike that T1 and T4
 - Sphericity is probably not very plausible

3.2.12 Violations of Assumptions

- Even if sphericity is plausible, it still may be violated
 - Very small violations can greatly increase type I error rate
- How to deal with violation of sphericity?
 - Adjust for violations of sphericity to return alpha to .05
 - Use **multivariate test** of repeated measures (next section)

3.2.13 Adjusting for sphericity violations

- Lower bound correction: Most conservative
 - Ignore repeated measures, treat as between subjects
 - Use critical F(1, n 1)
- Greenhouse-Geisser: Middle of the road
 - $-\hat{\epsilon}$ ranges from $\frac{1}{k-1}$ (severe violation) to 1 (sphericity)
 - Multiply degrees of freedom by $\hat{\epsilon}$
- Huynh-Feldt: Least conservative, smallest adjustment
 - Multiply degrees of freedom by $\tilde{\epsilon}$ (function of $\hat{\epsilon}$)

3.3 Multivariate RM ANOVA

3.3.1 Mutlivariate approach to repeated measures

- Multivariate extension of *paired t-test*
- Basically a MANOVA on specific set of difference scores
 - Multivariate tests (i.e., Wilks' lambda) as in MANOVA

3.3.2 Vector of differences

• k-1 differences between combinations of k repeated scores

- Must be **linearly independent**

- Most common: Differences between adjacent pairs of means
- For a single subject *i*:

$$\underline{Y}'_{id} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \\ \vdots \\ d_{i,k-1} \end{bmatrix} = \begin{bmatrix} Y_{i1} - Y_{i2} \\ Y_{i2} - Y_{i3} \\ Y_{i3} - Y_{i4} \\ \vdots \\ Y_{i,k-1} - Y_{ik} \end{bmatrix}$$

3.3.3 Matrix of difference scores

- $n \times (k-1)$ matrix of difference scores is matrix of outcomes
 - Rows are subjects, columns are difference scores
 - -k repeated measures: k-1 difference scores

$$\mathbf{Y}_{d} = \begin{bmatrix} d_{11} & d_{12} & \dots & d_{1,k-1} \\ d_{21} & d_{22} & \dots & d_{2,k-1} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \dots & d_{n,k-1} \end{bmatrix}$$

3.3.4 Covariance matrix of differences

- $(k-1) \times (k-1)$ covariance matrix of differences

 - $-s_{d_1}^2$ is the variance of the (T1-T2) scores across n subjects $-s_{d_1d_2}$ is the covariance between (T1-T2) and (T2-T3)- Unlike univariate test, **no assumptions about this matrix**
- For 4 timepoints, this is a 3×3 matrix:

$$\mathbf{S}_{d} = \begin{bmatrix} s_{d_{1}}^{2} & s_{d_{1}d_{2}} & s_{d_{1}d_{3}} \\ s_{d_{2}}^{2} & s_{d_{2}d_{3}} \\ & & s_{d_{3}}^{2} \end{bmatrix}$$

3.3.5 Null hypothesis

• $H_0: k-1$ vectors of **mean differences** are simultaneously

- All equal to each other AND all equal to 0

- NS test = no differences over time
 - All mean differences are 0
 - No adjacent differences are different from one another
- Significant test = differences over time
 - Some of the mean differences are not 0
 - Some adjacent differences are different from one another

3.3.6 Multivariate hypothesis tests

- Perform a MANOVA on the difference score matrix
 - Multivariate hypothesis tests:
 - * Wilks' lambda
 - * Pillai's trace
 - * Hotelling's trace
 - * Roy's largest characteristic root

3.4 Summary and comparison

3.4.1 Summary

- Univariate RM ANOVA
 - Single, repeatedly measured outcome
 - Sphericity assumption
- Multivariate RM ANOVA
 - Multiple, related outcomes
 - No sphericity assumption

3.4.2 Comparison

- Univariate approach: F(k-1, (n-1)(k-1))
 - Assumptions about covariance matrix (sphericity)
 - * But can adjust if assumptions not met
 - Missing data results in loss of entire subject
- Multivariate approach: F(k-1, n-k+1)
 - No assumptions about structure of covariance matrix
 - * (except that $n \ge k$ so it is invertable)
 - Missing data results in loss of entire subject

3.4.3 Recommendations: univariate vs. multivariate

- Univariate is preferred with small sample sizes
 - Sphericity holds (rare): More powerful, simpler, correct α
 - ALWAYS use univariate (with correction) if n < k
- Multivariate is preferred with large sample sizes
 - If sphericity doesn't hold (common): correct α
 - Do not use unless $n \ge k$
 - * With BS factors: n in each BS group needs to be $\geq k$

4 Summary

4.1 Summary

4.1.1 Summary of this week

- MANOVA is a way to analyze multiple outcomes in one model
 - Almost never a good choice
 - Limited utility for repeated measures
- RM ANOVA has univariate and multivariate versions
 - Univariate has some easily violated assumptions
 - Multivariate is good but still limited
 - Missing data, ANOVA framework only, time

4.1.2 Next few weeks

- RM ANOVA (both) have shortcomings
 - Best for short-term or single-session studies
 - Does not capture the TIME aspect of longitudinal data
 - Requires same # of repeated measures for each subject
 - Not informative about individual growth
 - Focus on **average** differences over time and group differences
 - ANOVA framework, so only categorical predictors
- Mixed models, latent growth models solve many of these issues