Multivariate: MANOVA and repeated
measures ANOVA
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1.1 Goals

1.1.1 Goals of this section

¢ Multiple measures of the same thing or related things as an outcome
— Possibly over time

o Want the variables separate: Not PCA / FA
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¢ In this section:

— MANOVA (this week)

— Repeated measures ANOVA (this week)
— Mixed models (next week)

— Mediation (2 weeks)

1.1.2 Goals of this lecture

o Multivariate Analysis of Variance (MANOVA)
— Outcome is multivariate: Several outcome variables
o Repeated measures ANOVA (RM ANOVA)

— Univariate: Single outcome variable, measured multiple times
— Multivariate: Multiple outcome variables

e Punchline: MANOVA is almost never a good choice
— But multivariate RM ANOVA is a decent approach

2 MANOVA

2.1 Univariate to multivariate
2.1.1 Extending ANOVA to multiple outcomes

o Frequently interested in more than 1 outcome at a time

— Anxiety

* Test anxiety, minor stressor anxiety, general anxiety
— Children’s school achievement

* Reading ability, reasoning ability, math ability
— Performance on a task

*x Speed and accuracy

2.1.2 Could do GLM on each outcome but...

o ..you (often) shouldn’t

— Inflated type I error due to multiple tests on correlated outcomes
— Sometimes only the combination of the outcomes shows an effect
— Ignore relations between DVs



2.1.3 Structure of this section

o Review (univariate) between-subjects ANOVA
— One outcome
« Extend to multivariate version

— Multiple related outcomes

2.1.4 Univariate analysis of variance (ANOVA)

o Independent variables (IVs) are categorical groups
— e.g., treatment and control

¢ Independent variables are called factors
— Not to be confused with latent factors

« Single outcome variable (DV)

— Continuous, normally distributed

2.1.5 ANOVA hypotheses are about the means

e One factor ANOVA

— k levels of the independent variable
— Null hypothesis: All k£ group means are equal

* Hy oy = pig = = py,

2.1.6 ANOVA hypotheses are about the means

e Two factor ANOVA

— k levels of one IV, m levels of other IV

— 3 null hypotheses
x Main effect 1: All k means across factor 1 are equal
x Main effect 2: All m means across factor 2 are equal
x Interaction: All cell means are equal



2.1.7 Partitioned variation

¢ Partition the variation in scores into:

— between-subject portion (group differences, SS;.ieen)
— within-subject portion (error, SS,;;ihin)
- SStotal = SSbetween + stithin

¢ Calculate based on observed scores, group means, grand mean

— Xy,; = score for subject f in condition ¢

7
— T, = mean for scores in condition ¢

— G = grand mean of all scores in the study

2.1.8 Partitioned variation
¢ Between group variation:
Ssbetween = TLZ(TZ - G_>2 =
n[(Ty = G)* + (T = G)* + -+ (I, — G)?]
e Within group variation:

stithin = ( 71‘)2 =
(X —T;)* + (Xy — T) o (X, —T)?

2.1.9 Testing the hypothesis

MSbetween = S%iwfen

SS
MS ... = MPwithin
within — k(n - 1)
F = MSbetween
MSwithin

o Compare observed F' to critical F'(k—1,k(n—1))

— Significant test = at least one of the k groups is different from the other groups



2.2 MANOVA model
2.2.1 Multivariate analysis of variance (MANOVA)

o Independent variables are categorical groups
— e.g., treatment and control

¢ Independent variables are called factors
— Not to be confused with latent factors

e Multiple outcome variables

— p outcome variables
— Continuous, normally distributed

2.2.2 What does MANOVA do with all those outcomes?

e MANOVA creates a linear combination of the p outcome variables

— Constructed to separate the k groups as much as possible
— “Maximally discriminating linear combination”

e Look for group differences on the linear combination
e If you can’t find differences on the maximally discriminating linear combination
of all the DVs, then there really really aren’t group differences on the DVs

2.2.3 MANOVA questions

e Do the groups differ at all?
— On the maximally discriminating linear combination
o If yes, post hoc:

— Which DVs have groups differences?
— Which groups differ on those DVs?



2.2.4 Covariation matrix of outcomes P

e Covariation matrix of the p DVs: p X p matrix
— Multivariate extension of S5,

otal

o Just like ANOVA: Partitions into between (H) and within (E)

SSl SP12 S‘Plp

P — SP21 SS2 SPQp
SPpl SPp2 SSp

2.2.5 Hypothesis matrix H

o Multivariate extension of SSy.;een: P X p matrix

— Diagonal: between-group variation of each DV
— Off-diagonal: covariation between means for pairs of DVs

SSu1 SPyaia - SPhy,
H = SPH,21 SSH,2 SPH,2p

SPH,pl SPH,pQ SSH,p

2.2.6 Aside: H matrix for two-factor MANOVA
e For a one-factor MANOVA, there is a single H matrix
e For a two-factor MANOVA, there is a single H matrix

— BUT it can be further partitioned into 3 matrices reflecting:

*+ Main effect 1
* Main effect 2
x Interaction effect

2.2.7 Error matrix E

o Multivariate extension of SS,,;;:n: P X p matrix

— Diagonal: within-group variation of each DV, added across k grp
— Off-diagonal: error covariation, added across k groups



¢ No between-group information in this matrix

,1p
E SPE,zl SSE,Q SPE72p
SPEJ,1 SPE,pQ SSEJ)
2.2.8 Partitioned variation
« ANOVA
- SStotal = Ssbetween + SSwithin
« MANOVA

— Total variation = between-group variation + within-group variation
— One factor: P=H+E

— Two factor: P = Hfactorl + HfactorQ + Hfactorl*factor2 +E

2.2.9 Multivariate hypothesis tests (omnibus)

« ANOVA

— Divide SS by their degrees of freedom to produce M S (variances)
— F-statistic is ratio of M Ss (variances)

« MANOVA
— Use matrix equivalent of variance: Determinant

x Determinant is “generalized variance” for a matrix

— Create analogues to F-statistics
— Unfortunately, it’s not straight-forward

2.2.10 Multivariate hypothesis tests

Four commonly used multivariate tests

— Different ratio of determinants or eigenvalues

Wilks’ lambda: within / total

Pillai’s trace: between / total

Hotelling’s trace: between / within

Roy’s largest characteristic root: between / total
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2.2.11 Wilks’ lambda
_ BB
H+E| |P]
— where |E| is the determinant of E
e Hj,: no between-group variation, so H is all zeroes and ratio is 1
— As group differences increase, A — 0
o Effect size = eta squared = n?> =1 — A

— n? = variance accounted for by the best linear combination of DVs

2.2.12 Pillai’s trace

o Pillai’s trace = trace [ H(H+ E)™!]
— where the trace of a matrix is the sum of the diagonal elements
e Conceptually:

— Matrix representing proportion of variation that is between-group
— Sum of eigenvalues from that matrix

2.2.13 Hotelling’s trace

« Hotelling’s trace = trace [H(E)™]
— where the trace of a matrix is the sum of the diagonal elements
¢ Conceptually:

— Matrix representing ratio of between- to within-group variation
— Sum of eigenvalues from that matrix

2.2.14 Roy’s largest characteristic root

o Roy’s greatest characteristic root = first eigenvalue of H(H + E)~!

o Conceptually:

— Matrix representing proportion of variation that is between-group
— First eigenvalue from that matrix

2.2.15 Summary of multivariate tests



Test Matrix Range (H, to H,) In words Function

Wilks E/T 1t00 Error proportion Determinant
Pillai H/T 0to1l Between proportion Trace
Hotelling H/E 0 to oo Between to within ratio Trace

Roy H/T Otol Between proportion 1st eigenvalue

These tests are similar, but they differ in terms of power and robustness to violations of
assumptions

2.2.16 Assumptions of MANOVA

e GLM: Multivariate normality of outcomes, linearity, etc

o “Homogeneity of variance-covariance matrices”

— Error matrix is same in all groups and E is average
— Multivariate extension of homogeneity of variance assumption

e Box’s M test to test this assumption

— Significant test means that assumption is violated
— Sensitive: use p<.001, ignore unless ns very different across groups

2.2.17 Which test should | use???
e One factor MANOVA with k = 2 groups: All tests are identical
¢ Recommended: Pillai’s trace
— Robust to assumptions, powerful when DVs not highly corr
¢ Recommended: Wilks’ lambda
— Good power, relatively robust when assumptions probably met
e Maybe use: Roy’s greatest characteristic root
— Powerful when DVs highly corr, not robust to assumptions
¢ Not recommended: Hotelling’s trace

— OK when sample size is very large



2.3 Summary and alternatives
2.3.1 MANOVA

¢ Extends ANOVA to multiple outcomes

— Many omnibus test options

— Many follow-up options

— Maximally discriminating linear combination?
— Missing data, ANOVA framework only, time

e Quantitude says MANOVA must die

2.3.2 MANOVA questions

e Do the groups differ at all (on max discriminating linear comb.)?
— This is what Pillai’s trace, etc are testing
o If yes, post hoc:

— Which DVs have groups differences?

— Which groups differ on those DVs?

— Enders, C. K. (2003). Performing multivariate group comparisons following a sta-
tistically significant MANOVA. Measurement and Evaluation in Counseling and
Development, 36, 40-56.

2.3.3 When to use MANOVA?

e DVs are highly negatively correlated
— Time to complete a task and number of errors on task
e DVs are all moderately correlated in either direction

— Around +0.6 correlation
— Not really high enough to support a latent factor
— Repeated measures
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2.3.4 When not to use MANOVA?

¢ DVs are not really correlated

— MANOVA is unnecessarily complicated and wasteful
— You don’t gain anything by analyzing them together

e DVs are all highly positively correlated

— MANOVA is unnecessarily complicated and wasteful
— The variables are all basically the same thing

2.3.5 Alternatives to MANOVA

¢ Repeated-measures DVs:

— Repeated measures ANOVA
— Mixed / multilevel / hierarchical linear models
— Latent growth models

e Separate univariate ANOVAs: esp uncorrelated DVs
o SEM / path model with multiple DVs
o Latent factor: esp highly correlated DVs

3 Repeated measures ANOVA
3.1 Overview / review

3.1.1 Between-subjects ANOVA

o Different subjects in each condition or cell of the design

— 2 dimensions: subjects and variables

subject condition outcome

N O TR W N
W NN DN = ==
— W WUt Wk W
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subject condition outcome

8 3 2
9 3 4

3.1.2 Between-subjects ANOVA: Partitioning

¢ Partition the variation in scores into:

— between-subject portion (group differences, SSy.ieen)
— within-subject portion (error, SS,;nin)
o SSt _SSbetween+SS

otal — within

3.1.3 Repeated-measures

1. Measure the same DV over time
e e.g., anxiety level at 1 wk intervals after starting medication
2. Measure the same DV in each of a set of related conditions
e e.g., anxiety level after CBT, after medication, etc.
o Multiple outcome measures that are related

— Measured on the same person (not independent)
— MANOVA: related dependent variables

3.1.4 Repeated-measures ANOVA

o Subjects are repeatedly measured / same subject in all conditions

— 3 dimensions: subjects, variables (Y;), treatment or time (7)

subject Y1 T1 Y1 T2 Y1 T3 Y1 T4

w
—
[\)
t

© 00 O Ui WK
=N = W WOt W
Ot = WD WLt
TN =W
N = Ok O W Ww
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3.1.5 Two ways to do repeated-measures ANOVA

o Univariate:

— Standard repeated measures ANOVA
— Treats the outcome as one variable that is measured repeatedly

e Multivariate:

— Treats the outcome as a multivariate outcome
* Single outcome made up of several (related) variables

Sound familiar?

3.1.6 Univariate: n subjects, k repeated measures

¢ Single outcome variable Y
— “Univariate”
o T (time or treatment) is a predictor
— Specific levels: 1,2, ...,k
e Also called “tall” or “stacked” data format

— Used in mixed models (next week)

3.1.7 Univariate: n subjects, k repeated measures

subject T Y

1 1 Y,
1 2 Y
1 :

1 Y
2 1 Y,
2 2 Yy
2 oo

2 k Y,
: 3

n 1 Y,
n 2 Y,
n : :

n k Y.
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3.1.8 Multivariate: n subjects, k repeated measures

e Several related outcome variables Y
— “Multivariate”

o T (time or treatment) is not an explicit predictor
— Treated like waves

o Also called “wide” data format

— Used in MANOVA

3.1.9 Multivariate: n subjects, k repeated measures

subject Y1_T1 Y1.T7T2 .. Y1 T4
1 Yy, Yo S
2 Y21 Y22 e sz
3 Y31 Y32 cee Y3k
n Ynl Yn2 Ynk

3.2 Univariate RM ANOVA

3.2.1 Univariate approach to repeated measures

e Partition variation in scores into:

— Between-subject variation
— Within-subject variation, which is further partitioned into:

« Treatment (or time) effects for individuals
* Residual or random error

3.2.2 Univariate approach to repeated measures
. Yz-j = score for person ¢ at time or treatment j
. Tj = mean score for treatment or time j
— Up to k treatments or times

e P, = mean score for person %
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— Up to n subjects

¢ (G = grand mean of all scores

3.2.3 Between-subjects variation

¢ Individual subjects’ variation around the grand mean

SSbetween subject — k Z(ﬁz - 6)2
=1

=k[(Py = G)* + (Py = G)* + -+ + (P, — G)?]
e Similar to between-groups variation in ANOVA, but no groups here

— People are “groups”

3.2.4 Within-subjects variation

o Individual subjects’ variation around their mean

e For person :

SS

within person i

k
= (Yz‘j - Pi)z
=1

(Vi = P)? + (Vi = P))* + -+ (Vi — Py)?
. n k -
o Add up across all n subjects: SS,inin subject = iy ijl(Yij —P,)?
3.2.5 Within-subjects variation

o Within-subjects variation = time (or treatment) + residual

o Time variation = timepoint mean variation around grand mean

k
SStime = TLZ(T] _é>2
=1



3.2.6 Within-subjects variation

o Within-subjects variation = time (or treatment) + residual

¢ Residual variation = any remaining variation

=55

within subject

SS

residual — SSt S‘St

imexsubject ime

3.2.7 Full partitioning of variation

e Keep in mind: No groups here at all

Sstotal = S‘S’between subject + SStime + SSresidual

Source SS df MS d

Between SSbetu}een subjectn —1 MSbetween subject

Within S‘Swithin subject n(k - 1) Mswithin subject MS

. $g. b1 MS.. _TFtime
1ime time tume MSTesidual

—Residual S5 esidual (n=1(k=1)  MS,c5iqual

3.2.8 Mixed effects ANOVA

¢ Between-subjects + within-subjects = “mixed ANOVA”

— Unfortunate: too easy to confuse with “mixed models”

* Also have several other names: Next week
¢ You can have BOTH within and between subjects factors in ANOVA
— e.g., group (between) and time (within)
¢ Also look at the interaction

— Does time effect vary across groups? Or vice versa?

3.2.9 Assumptions of univariate RM ANOVA

e About the covariance matrix of the outcomes

16



2
01 012 013 014
2
02 023 024
2
03 O34

2
04

SYY =

e 0?2 = variance of outcome at time 1 / treatment 1

e 0,5 = covariance between outcome at time /treatment 1 and outcome at time / treatment

2

3.2.10 Compound symmetry and sphericity

¢ Compound symmetry of the covariance matrix of outcomes

— Homogeneity of variances (i.e., variances are all the same):

2 52 2 2
x 0] =05 =03 =0}

— Homogeneity of covariances (i.e., covariances are all the same):

* Oyp = 013 = 014 = Og3 = Ogq = O34
e Actual assumption: Sphericity

— Compound symmetry holds for differences between pairs of scores
— Slightly weaker assumption

3.2.11 Plausibility of sphericity assumption

o T through T}, are different trials or conditions in a single session
— Sphericity may be plausible
o T, through T are different time points

— Say, 9th, 10th, 11th, and 12th grades
— Probably expect T1 and T2 to be more alike that T1 and T4
— Sphericity is probably not very plausible

3.2.12 Violations of Assumptions

o Even if sphericity is plausible, it still may be violated
— Very small violations can greatly increase type I error rate
o How to deal with violation of sphericity?

— Adjust for violations of sphericity to return alpha to .05
— Use multivariate test of repeated measures (next section)

17



3.2.13 Adjusting for sphericity violations

¢ Lower bound correction: Most conservative

— Ignore repeated measures, treat as between subjects

— Use critical F'(1,n — 1)
¢ Greenhouse-Geisser: Middle of the road

— € ranges from 15 (severe violation) to 1 (sphericity)

— Multiply degrees of freedom by €
e Huynh-Feldt: Least conservative, smallest adjustment

— Multiply degrees of freedom by € (function of €)

3.3 Multivariate RM ANOVA
3.3.1 Mutlivariate approach to repeated measures

o Multivariate extension of paired t-test
¢ Basically a MANOVA on specific set of difference scores

— Multivariate tests (i.e., Wilks’ lambda) as in MANOVA

3.3.2 Vector of differences

e k — 1 differences between combinations of k repeated scores

— Must be linearly independent
— Most common: Differences between adjacent pairs of means

o For a single subject i:

diy Y1 — Y

dio Yio — Y3

Xid = di3 = Yis =Y
di,k—l Yz’,k—1 — Yy

18



3.3.3 Matrix of difference scores

e n X (k—1) matrix of difference scores is matrix of outcomes

— Rows are subjects, columns are difference scores
— k repeated measures: k — 1 difference scores

dyy dyp dl,k—l
Yd _ d:21 d:22 .'.. d27z€_1
dnl dn2 dn,kfl

3.3.4 Covariance matrix of differences

e (k—1) x (k—1) covariance matrix of differences

— sfll is the variance of the (T'1 — T'2) scores across n subjects
— 84,4, 18 the covariance between (71 —72) and (72 —T3)
— Unlike univariate test, no assumptions about this matrix

e For 4 timepoints, this is a 3 x 3 matrix:

2
Sd, Sdyd, Sd,dy

3.3.5 Null hypothesis

e Hy: k—1 vectors of mean differences are simultaneously
— All equal to each other AND all equal to 0
e NS test = no differences over time

— All mean differences are 0
— No adjacent differences are different from one another

e Significant test = differences over time

— Some of the mean differences are not 0
— Some adjacent differences are different from one another
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3.3.6 Multivariate hypothesis tests

e Perform a MANOVA on the difference score matrix

— Multivariate hypothesis tests:

Wilks’ lambda

Pillai’s trace

Hotelling’s trace

Roy’s largest characteristic root

* X X X

3.4 Summary and comparison
3.4.1 Summary

e Univariate RM ANOVA

— Single, repeatedly measured outcome
— Sphericity assumption

o Multivariate RM ANOVA

— Multiple, related outcomes
— No sphericity assumption

3.4.2 Comparison

o Univariate approach: F(k—1,(n—1)(k—1))

— Assumptions about covariance matrix (sphericity)
* But can adjust if assumptions not met

— Missing data results in loss of entire subject
o Multivariate approach: F(k—1,n—k+1)

— No assumptions about structure of covariance matrix
% (except that n > k so it is invertable)

— Missing data results in loss of entire subject

20



3.4.3 Recommendations: univariate vs. multivariate

e Univariate is preferred with small sample sizes

— Sphericity holds (rare): More powerful, simpler, correct a
— ALWAYS use univariate (with correction) if n < k

o Multivariate is preferred with large sample sizes

— If sphericity doesn’t hold (common): correct «
— Do not use unless n > k

x With BS factors: n in each BS group needs to be > k

4 Summary

4.1 Summary
4.1.1 Summary of this week

¢ MANOVA is a way to analyze multiple outcomes in one model

— Almost never a good choice
— Limited utility for repeated measures

¢ RM ANOVA has univariate and multivariate versions

— Univariate has some easily violated assumptions
— Multivariate is good but still limited
— Missing data, ANOVA framework only, time

4.1.2 Next few weeks

o« RM ANOVA (both) have shortcomings

— Best for short-term or single-session studies

— Does not capture the TIME aspect of longitudinal data

— Requires same # of repeated measures for each subject

— Not informative about individual growth

— Focus on average differences over time and group differences
ANOVA framework, so only categorical predictors

e Mixed models, latent growth models solve many of these issues
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