
Multivariate: MANOVA and repeated
measures ANOVA
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1 Goals

1.1 Goals

1.1.1 Goals of this section

• Multiple measures of the same thing or related things as an outcome

– Possibly over time

• Want the variables separate: Not PCA / FA
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• In this section:

– MANOVA (this week)
– Repeated measures ANOVA (this week)
– Mixed models (next week)
– Mediation (2 weeks)

1.1.2 Goals of this lecture

• Multivariate Analysis of Variance (MANOVA)

– Outcome is multivariate: Several outcome variables

• Repeated measures ANOVA (RM ANOVA)

– Univariate: Single outcome variable, measured multiple times
– Multivariate: Multiple outcome variables

• Punchline: MANOVA is almost never a good choice

– But multivariate RM ANOVA is a decent approach

2 MANOVA

2.1 Univariate to multivariate

2.1.1 Extending ANOVA to multiple outcomes

• Frequently interested in more than 1 outcome at a time

– Anxiety
∗ Test anxiety, minor stressor anxiety, general anxiety

– Children’s school achievement
∗ Reading ability, reasoning ability, math ability

– Performance on a task
∗ Speed and accuracy

2.1.2 Could do GLM on each outcome but…

• …you (often) shouldn’t

– Inflated type I error due to multiple tests on correlated outcomes
– Sometimes only the combination of the outcomes shows an effect
– Ignore relations between DVs
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2.1.3 Structure of this section

• Review (univariate) between-subjects ANOVA

– One outcome

• Extend to multivariate version

– Multiple related outcomes

2.1.4 Univariate analysis of variance (ANOVA)

• Independent variables (IVs) are categorical groups

– e.g., treatment and control

• Independent variables are called factors

– Not to be confused with latent factors

• Single outcome variable (DV)

– Continuous, normally distributed

2.1.5 ANOVA hypotheses are about the means

• One factor ANOVA

– 𝑘 levels of the independent variable
– Null hypothesis: All 𝑘 group means are equal

∗ 𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘

2.1.6 ANOVA hypotheses are about the means

• Two factor ANOVA

– 𝑘 levels of one IV, 𝑚 levels of other IV
– 3 null hypotheses

∗ Main effect 1: All 𝑘 means across factor 1 are equal
∗ Main effect 2: All 𝑚 means across factor 2 are equal
∗ Interaction: All cell means are equal
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2.1.7 Partitioned variation

• Partition the variation in scores into:

– between-subject portion (group differences, 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛)
– within-subject portion (error, 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛)
– 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

• Calculate based on observed scores, group means, grand mean

– 𝑋𝑓𝑖 = score for subject 𝑓 in condition 𝑖
– ̄𝑇𝑖 = mean for scores in condition 𝑖
– ̄𝐺 = grand mean of all scores in the study

2.1.8 Partitioned variation

• Between group variation:

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑛Σ( ̄𝑇𝑖 − ̄𝐺)2 =
𝑛[( ̄𝑇1 − ̄𝐺)2 + ( ̄𝑇2 − ̄𝐺)2 + ⋯ + ( ̄𝑇𝑘 − ̄𝐺)2]

• Within group variation:

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = Σ(𝑋𝑓𝑖 − ̄𝑇𝑖)2 =
(𝑋1𝑖 − ̄𝑇𝑖)2 + (𝑋2𝑖 − ̄𝑇𝑖)2 + ⋯ + (𝑋𝑛𝑖 − ̄𝑇𝑖)2

2.1.9 Testing the hypothesis

𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑘 − 1

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛
𝑘(𝑛 − 1)

𝐹 = 𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

• Compare observed 𝐹 to critical 𝐹(𝑘 − 1, 𝑘(𝑛 − 1))
– Significant test = at least one of the 𝑘 groups is different from the other groups
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2.2 MANOVA model

2.2.1 Multivariate analysis of variance (MANOVA)

• Independent variables are categorical groups

– e.g., treatment and control

• Independent variables are called factors

– Not to be confused with latent factors

• Multiple outcome variables

– 𝑝 outcome variables
– Continuous, normally distributed

2.2.2 What does MANOVA do with all those outcomes?

• MANOVA creates a linear combination of the 𝑝 outcome variables

– Constructed to separate the 𝑘 groups as much as possible
– “Maximally discriminating linear combination”

• Look for group differences on the linear combination
• If you can’t find differences on the maximally discriminating linear combination

of all the DVs, then there really really aren’t group differences on the DVs

2.2.3 MANOVA questions

• Do the groups differ at all?

– On the maximally discriminating linear combination

• If yes, post hoc:

– Which DVs have groups differences?
– Which groups differ on those DVs?
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2.2.4 Covariation matrix of outcomes P

• Covariation matrix of the 𝑝 DVs: 𝑝 × 𝑝 matrix

– Multivariate extension of 𝑆𝑆𝑡𝑜𝑡𝑎𝑙

• Just like ANOVA: Partitions into between (H) and within (E)

P =
⎡
⎢⎢
⎣

𝑆𝑆1 𝑆𝑃12 ⋯ 𝑆𝑃1𝑝
𝑆𝑃21 𝑆𝑆2 ⋯ 𝑆𝑃2𝑝

⋮ ⋮ ⋱ ⋮
𝑆𝑃𝑝1 𝑆𝑃𝑝2 ⋯ 𝑆𝑆𝑝

⎤
⎥⎥
⎦

2.2.5 Hypothesis matrix H

• Multivariate extension of 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛: 𝑝 × 𝑝 matrix

– Diagonal: between-group variation of each DV
– Off-diagonal: covariation between means for pairs of DVs

H =
⎡
⎢⎢
⎣

𝑆𝑆𝐻,1 𝑆𝑃𝐻,12 ⋯ 𝑆𝑃𝐻,1𝑝
𝑆𝑃𝐻,21 𝑆𝑆𝐻,2 ⋯ 𝑆𝑃𝐻,2𝑝

⋮ ⋮ ⋱ ⋮
𝑆𝑃𝐻,𝑝1 𝑆𝑃𝐻,𝑝2 ⋯ 𝑆𝑆𝐻,𝑝

⎤
⎥⎥
⎦

2.2.6 Aside: H matrix for two-factor MANOVA

• For a one-factor MANOVA, there is a single H matrix
• For a two-factor MANOVA, there is a single H matrix

– BUT it can be further partitioned into 3 matrices reflecting:
∗ Main effect 1
∗ Main effect 2
∗ Interaction effect

2.2.7 Error matrix E

• Multivariate extension of 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛: 𝑝 × 𝑝 matrix

– Diagonal: within-group variation of each DV, added across 𝑘 grp
– Off-diagonal: error covariation, added across 𝑘 groups
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• No between-group information in this matrix

E =
⎡
⎢⎢
⎣

𝑆𝑆𝐸,1 𝑆𝑃𝐸,12 ⋯ 𝑆𝑃𝐸,1𝑝
𝑆𝑃𝐸,21 𝑆𝑆𝐸,2 ⋯ 𝑆𝑃𝐸,2𝑝

⋮ ⋮ ⋱ ⋮
𝑆𝑃𝐸,𝑝1 𝑆𝑃𝐸,𝑝2 ⋯ 𝑆𝑆𝐸,𝑝

⎤
⎥⎥
⎦

2.2.8 Partitioned variation

• ANOVA

– 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

• MANOVA

– Total variation = between-group variation + within-group variation
– One factor: P = H + E
– Two factor: P = H𝑓𝑎𝑐𝑡𝑜𝑟1 + H𝑓𝑎𝑐𝑡𝑜𝑟2 + H𝑓𝑎𝑐𝑡𝑜𝑟1∗𝑓𝑎𝑐𝑡𝑜𝑟2 + E

2.2.9 Multivariate hypothesis tests (omnibus)

• ANOVA

– Divide 𝑆𝑆 by their degrees of freedom to produce 𝑀𝑆 (variances)
– 𝐹 -statistic is ratio of 𝑀𝑆s (variances)

• MANOVA

– Use matrix equivalent of variance: Determinant
∗ Determinant is “generalized variance” for a matrix

– Create analogues to 𝐹 -statistics
– Unfortunately, it’s not straight-forward

2.2.10 Multivariate hypothesis tests

• Four commonly used multivariate tests

– Different ratio of determinants or eigenvalues

• Wilks’ lambda: within / total
• Pillai’s trace: between / total
• Hotelling’s trace: between / within
• Roy’s largest characteristic root: between / total
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2.2.11 Wilks’ lambda

• Λ = |E|
|H + E| = |E|

|P|
– where |E| is the determinant of E

• 𝐻0: no between-group variation, so H is all zeroes and ratio is 1
– As group differences increase, Λ → 0

• Effect size = eta squared = 𝜂2 = 1 − Λ
– 𝜂2 = variance accounted for by the best linear combination of DVs

2.2.12 Pillai’s trace

• Pillai’s trace = 𝑡𝑟𝑎𝑐𝑒 [H(H + E)−1]
– where the trace of a matrix is the sum of the diagonal elements

• Conceptually:
– Matrix representing proportion of variation that is between-group
– Sum of eigenvalues from that matrix

2.2.13 Hotelling’s trace

• Hotelling’s trace = 𝑡𝑟𝑎𝑐𝑒 [H(E)−1]
– where the trace of a matrix is the sum of the diagonal elements

• Conceptually:
– Matrix representing ratio of between- to within-group variation
– Sum of eigenvalues from that matrix

2.2.14 Roy’s largest characteristic root

• Roy’s greatest characteristic root = first eigenvalue of H(H + E)−1

• Conceptually:

– Matrix representing proportion of variation that is between-group
– First eigenvalue from that matrix

2.2.15 Summary of multivariate tests
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Test Matrix Range (𝐻0 to 𝐻𝐴) In words Function
Wilks E/T 1 to 0 Error proportion Determinant
Pillai H/T 0 to 1 Between proportion Trace
Hotelling H/E 0 to ∞ Between to within ratio Trace
Roy H/T 0 to 1 Between proportion 1st eigenvalue

These tests are similar, but they differ in terms of power and robustness to violations of
assumptions

2.2.16 Assumptions of MANOVA

• GLM: Multivariate normality of outcomes, linearity, etc

• “Homogeneity of variance-covariance matrices”

– Error matrix is same in all groups and E is average
– Multivariate extension of homogeneity of variance assumption

• Box’s M test to test this assumption

– Significant test means that assumption is violated
– Sensitive: use p<.001, ignore unless 𝑛s very different across groups

2.2.17 Which test should I use???

• One factor MANOVA with k = 2 groups: All tests are identical
• Recommended: Pillai’s trace

– Robust to assumptions, powerful when DVs not highly corr

• Recommended: Wilks’ lambda

– Good power, relatively robust when assumptions probably met

• Maybe use: Roy’s greatest characteristic root

– Powerful when DVs highly corr, not robust to assumptions

• Not recommended: Hotelling’s trace

– OK when sample size is very large
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2.3 Summary and alternatives

2.3.1 MANOVA

• Extends ANOVA to multiple outcomes

– Many omnibus test options
– Many follow-up options
– Maximally discriminating linear combination?
– Missing data, ANOVA framework only, time

• Quantitude says MANOVA must die

2.3.2 MANOVA questions

• Do the groups differ at all (on max discriminating linear comb.)?

– This is what Pillai’s trace, etc are testing

• If yes, post hoc:

– Which DVs have groups differences?
– Which groups differ on those DVs?
– Enders, C. K. (2003). Performing multivariate group comparisons following a sta-

tistically significant MANOVA. Measurement and Evaluation in Counseling and
Development, 36, 40-56.

2.3.3 When to use MANOVA?

• DVs are highly negatively correlated

– Time to complete a task and number of errors on task

• DVs are all moderately correlated in either direction

– Around ±0.6 correlation
– Not really high enough to support a latent factor
– Repeated measures

10
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2.3.4 When not to use MANOVA?

• DVs are not really correlated

– MANOVA is unnecessarily complicated and wasteful
– You don’t gain anything by analyzing them together

• DVs are all highly positively correlated

– MANOVA is unnecessarily complicated and wasteful
– The variables are all basically the same thing

2.3.5 Alternatives to MANOVA

• Repeated-measures DVs:

– Repeated measures ANOVA
– Mixed / multilevel / hierarchical linear models
– Latent growth models

• Separate univariate ANOVAs: esp uncorrelated DVs
• SEM / path model with multiple DVs
• Latent factor: esp highly correlated DVs

3 Repeated measures ANOVA

3.1 Overview / review

3.1.1 Between-subjects ANOVA

• Different subjects in each condition or cell of the design

– 2 dimensions: subjects and variables

subject condition outcome
1 1 3
2 1 4
3 1 3
4 2 5
5 2 3
6 2 3
7 3 1
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subject condition outcome
8 3 2
9 3 4

3.1.2 Between-subjects ANOVA: Partitioning

• Partition the variation in scores into:

– between-subject portion (group differences, 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛)
– within-subject portion (error, 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛)
– 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

3.1.3 Repeated-measures

1. Measure the same DV over time

• e.g., anxiety level at 1 wk intervals after starting medication

2. Measure the same DV in each of a set of related conditions

• e.g., anxiety level after CBT, after medication, etc.

• Multiple outcome measures that are related

– Measured on the same person (not independent)
– MANOVA: related dependent variables

3.1.4 Repeated-measures ANOVA

• Subjects are repeatedly measured / same subject in all conditions

– 3 dimensions: subjects, variables (𝑌1), treatment or time (𝑇 )

subject 𝑌 1_𝑇 1 𝑌 1_𝑇 2 𝑌 1_𝑇 3 𝑌 1_𝑇 4
1 3 1 2 5
2 4 5 1 3
3 3 3 3 3
4 5 2 4 2
5 3 4 4 5
6 3 3 4 4
7 1 1 4 5
8 2 5 2 1
9 4 4 5 2
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3.1.5 Two ways to do repeated-measures ANOVA

• Univariate:

– Standard repeated measures ANOVA
– Treats the outcome as one variable that is measured repeatedly

• Multivariate:

– Treats the outcome as a multivariate outcome
∗ Single outcome made up of several (related) variables

· Sound familiar?

3.1.6 Univariate: 𝑛 subjects, 𝑘 repeated measures

• Single outcome variable 𝑌
– “Univariate”

• 𝑇 (time or treatment) is a predictor

– Specific levels: 1, 2, … , 𝑘
• Also called “tall” or “stacked” data format

– Used in mixed models (next week)

3.1.7 Univariate: 𝑛 subjects, 𝑘 repeated measures

subject 𝑇 𝑌
1 1 𝑌11
1 2 𝑌12
1 ⋮ ⋮
1 k 𝑌1𝑘
2 1 𝑌21
2 2 𝑌22
2 ⋮ ⋮
2 k 𝑌2𝑘
⋮ 3 ⋮
n 1 𝑌𝑛1
n 2 𝑌𝑛2
n ⋮ ⋮
n k 𝑌𝑛𝑘
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3.1.8 Multivariate: 𝑛 subjects, 𝑘 repeated measures

• Several related outcome variables 𝑌
– “Multivariate”

• 𝑇 (time or treatment) is not an explicit predictor

– Treated like waves

• Also called “wide” data format

– Used in MANOVA

3.1.9 Multivariate: 𝑛 subjects, 𝑘 repeated measures

subject 𝑌 1_𝑇 1 𝑌 1_𝑇 2 … 𝑌 1_𝑇 4
1 𝑌11 𝑌12 … 𝑌1𝑘
2 𝑌21 𝑌22 … 𝑌2𝑘
3 𝑌31 𝑌32 … 𝑌3𝑘
⋮ ⋮ ⋮ ⋱ ⋮
n 𝑌𝑛1 𝑌𝑛2 … 𝑌𝑛𝑘

3.2 Univariate RM ANOVA

3.2.1 Univariate approach to repeated measures

• Partition variation in scores into:

– Between-subject variation
– Within-subject variation, which is further partitioned into:

∗ Treatment (or time) effects for individuals
∗ Residual or random error

3.2.2 Univariate approach to repeated measures

• 𝑌𝑖𝑗 = score for person 𝑖 at time or treatment 𝑗
• ̄𝑇𝑗 = mean score for treatment or time 𝑗

– Up to 𝑘 treatments or times

• ̄𝑃𝑖 = mean score for person 𝑖
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– Up to 𝑛 subjects

• ̄𝐺 = grand mean of all scores

3.2.3 Between-subjects variation

• Individual subjects’ variation around the grand mean

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 𝑘
𝑛

∑
𝑖=1

(𝑃 𝑖 − 𝐺)2

= 𝑘[(𝑃 1 − 𝐺)2 + (𝑃 2 − 𝐺)2 + ⋯ + (𝑃 𝑘 − 𝐺)2]

• Similar to between-groups variation in ANOVA, but no groups here

– People are “groups”

3.2.4 Within-subjects variation

• Individual subjects’ variation around their mean

• For person 𝑖:

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 =
𝑘

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑃 𝑖)2

(𝑌𝑖1 − 𝑃 𝑖)2 + (𝑌𝑖2 − 𝑃 𝑖)2 + ⋯ + (𝑌𝑖𝑘 − 𝑃 𝑖)2

• Add up across all 𝑛 subjects: 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = ∑𝑛
𝑖=1 ∑𝑘

𝑗=1(𝑌𝑖𝑗 − 𝑃 𝑖)2

3.2.5 Within-subjects variation

• Within-subjects variation = time (or treatment) + residual

• Time variation = timepoint mean variation around grand mean

𝑆𝑆𝑡𝑖𝑚𝑒 = 𝑛
𝑘

∑
𝑗=1

(𝑇 𝑗 − 𝐺)2

= 𝑛[(𝑇 1 − 𝐺)2 + (𝑇 2 − 𝐺)2 + ⋯ + (𝑇 𝑘 − 𝐺)2]
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3.2.6 Within-subjects variation

• Within-subjects variation = time (or treatment) + residual

• Residual variation = any remaining variation

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑆𝑆𝑡𝑖𝑚𝑒×𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 𝑆𝑆𝑡𝑖𝑚𝑒

3.2.7 Full partitioning of variation

• Keep in mind: No groups here at all

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 + 𝑆𝑆𝑡𝑖𝑚𝑒 + 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

Source SS df MS F
Between 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑛 − 1 𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡
Within 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑛(𝑘 − 1) 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡

–Time 𝑆𝑆𝑡𝑖𝑚𝑒 𝑘 − 1 𝑀𝑆𝑡𝑖𝑚𝑒
𝑀𝑆𝑡𝑖𝑚𝑒

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
–Residual 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑛 − 1)(𝑘 − 1) 𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

3.2.8 Mixed effects ANOVA

• Between-subjects + within-subjects = “mixed ANOVA”

– Unfortunate: too easy to confuse with “mixed models”
∗ Also have several other names: Next week

• You can have BOTH within and between subjects factors in ANOVA

– e.g., group (between) and time (within)

• Also look at the interaction

– Does time effect vary across groups? Or vice versa?

3.2.9 Assumptions of univariate RM ANOVA

• About the covariance matrix of the outcomes
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S𝑌 𝑌 =
⎡
⎢⎢
⎣

𝜎2
1 𝜎12 𝜎13 𝜎14

𝜎2
2 𝜎23 𝜎24

𝜎2
3 𝜎34

𝜎2
4

⎤
⎥⎥
⎦

• 𝜎2
1 = variance of outcome at time 1 / treatment 1

• 𝜎12 = covariance between outcome at time /treatment 1 and outcome at time / treatment
2

3.2.10 Compound symmetry and sphericity

• Compound symmetry of the covariance matrix of outcomes

– Homogeneity of variances (i.e., variances are all the same):
∗ 𝜎2

1 = 𝜎2
2 = 𝜎2

3 = 𝜎2
4

– Homogeneity of covariances (i.e., covariances are all the same):
∗ 𝜎12 = 𝜎13 = 𝜎14 = 𝜎23 = 𝜎24 = 𝜎34

• Actual assumption: Sphericity

– Compound symmetry holds for differences between pairs of scores
– Slightly weaker assumption

3.2.11 Plausibility of sphericity assumption

• 𝑇1 through 𝑇𝑘 are different trials or conditions in a single session

– Sphericity may be plausible

• 𝑇1 through 𝑇𝑘 are different time points

– Say, 9th, 10th, 11th, and 12th grades
– Probably expect T1 and T2 to be more alike that T1 and T4
– Sphericity is probably not very plausible

3.2.12 Violations of Assumptions

• Even if sphericity is plausible, it still may be violated

– Very small violations can greatly increase type I error rate

• How to deal with violation of sphericity?

– Adjust for violations of sphericity to return alpha to .05
– Use multivariate test of repeated measures (next section)
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3.2.13 Adjusting for sphericity violations

• Lower bound correction: Most conservative

– Ignore repeated measures, treat as between subjects

– Use critical 𝐹 (1, n − 1)

• Greenhouse-Geisser: Middle of the road

– ̂𝜖 ranges from 1
𝑘−1 (severe violation) to 1 (sphericity)

– Multiply degrees of freedom by ̂𝜖
• Huynh-Feldt: Least conservative, smallest adjustment

– Multiply degrees of freedom by ̃𝜖 (function of ̂𝜖)

3.3 Multivariate RM ANOVA

3.3.1 Mutlivariate approach to repeated measures

• Multivariate extension of paired t-test
• Basically a MANOVA on specific set of difference scores

– Multivariate tests (i.e., Wilks’ lambda) as in MANOVA

3.3.2 Vector of differences

• 𝑘 − 1 differences between combinations of 𝑘 repeated scores

– Must be linearly independent
– Most common: Differences between adjacent pairs of means

• For a single subject 𝑖:

𝑌 ′
𝑖𝑑 =

⎡
⎢
⎢
⎢
⎣

𝑑𝑖1
𝑑𝑖2
𝑑𝑖3
⋮

𝑑𝑖,𝑘−1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑌𝑖1 − 𝑌𝑖2
𝑌𝑖2 − 𝑌𝑖3
𝑌𝑖3 − 𝑌𝑖4

⋮
𝑌𝑖,𝑘−1 − 𝑌𝑖𝑘

⎤
⎥
⎥
⎥
⎦
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3.3.3 Matrix of difference scores

• 𝑛 × (𝑘 − 1) matrix of difference scores is matrix of outcomes

– Rows are subjects, columns are difference scores
– 𝑘 repeated measures: 𝑘 − 1 difference scores

Y𝑑 =
⎡
⎢⎢
⎣

𝑑11 𝑑12 … 𝑑1,𝑘−1
𝑑21 𝑑22 … 𝑑2,𝑘−1

⋮ ⋮ ⋱ ⋮
𝑑𝑛1 𝑑𝑛2 … 𝑑𝑛,𝑘−1

⎤
⎥⎥
⎦

3.3.4 Covariance matrix of differences

• (𝑘 − 1) × (𝑘 − 1) covariance matrix of differences

– 𝑠2
𝑑1

is the variance of the (𝑇 1 − 𝑇 2) scores across 𝑛 subjects
– 𝑠𝑑1𝑑2

is the covariance between (𝑇 1 − 𝑇 2) and (𝑇 2 − 𝑇 3)
– Unlike univariate test, no assumptions about this matrix

• For 4 timepoints, this is a 3 × 3 matrix:

S𝑑 = ⎡⎢
⎣

𝑠2
𝑑1

𝑠𝑑1𝑑2
𝑠𝑑1𝑑3

𝑠2
𝑑2

𝑠𝑑2𝑑3
𝑠2

𝑑3

⎤⎥
⎦

3.3.5 Null hypothesis

• 𝐻0: 𝑘 − 1 vectors of mean differences are simultaneously

– All equal to each other AND all equal to 0

• NS test = no differences over time

– All mean differences are 0
– No adjacent differences are different from one another

• Significant test = differences over time

– Some of the mean differences are not 0
– Some adjacent differences are different from one another
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3.3.6 Multivariate hypothesis tests

• Perform a MANOVA on the difference score matrix

– Multivariate hypothesis tests:
∗ Wilks’ lambda
∗ Pillai’s trace
∗ Hotelling’s trace
∗ Roy’s largest characteristic root

3.4 Summary and comparison

3.4.1 Summary

• Univariate RM ANOVA

– Single, repeatedly measured outcome
– Sphericity assumption

• Multivariate RM ANOVA

– Multiple, related outcomes
– No sphericity assumption

3.4.2 Comparison

• Univariate approach: 𝐹(𝑘 − 1, (𝑛 − 1)(𝑘 − 1))
– Assumptions about covariance matrix (sphericity)

∗ But can adjust if assumptions not met
– Missing data results in loss of entire subject

• Multivariate approach: 𝐹(𝑘 − 1, 𝑛 − 𝑘 + 1)
– No assumptions about structure of covariance matrix

∗ (except that 𝑛 ≥ 𝑘 so it is invertable)
– Missing data results in loss of entire subject
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3.4.3 Recommendations: univariate vs. multivariate

• Univariate is preferred with small sample sizes

– Sphericity holds (rare): More powerful, simpler, correct 𝛼
– ALWAYS use univariate (with correction) if 𝑛 < 𝑘

• Multivariate is preferred with large sample sizes

– If sphericity doesn’t hold (common): correct 𝛼
– Do not use unless 𝑛 ≥ 𝑘

∗ With BS factors: 𝑛 in each BS group needs to be ≥ 𝑘

4 Summary

4.1 Summary

4.1.1 Summary of this week

• MANOVA is a way to analyze multiple outcomes in one model

– Almost never a good choice
– Limited utility for repeated measures

• RM ANOVA has univariate and multivariate versions

– Univariate has some easily violated assumptions
– Multivariate is good but still limited
– Missing data, ANOVA framework only, time

4.1.2 Next few weeks

• RM ANOVA (both) have shortcomings

– Best for short-term or single-session studies
– Does not capture the TIME aspect of longitudinal data
– Requires same # of repeated measures for each subject
– Not informative about individual growth
– Focus on average differences over time and group differences
– ANOVA framework, so only categorical predictors

• Mixed models, latent growth models solve many of these issues
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