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Instructor Information

o Stefany Coxe, Ph.D.
o Email: stefany.coxe@fiu.edu — this is the best way to contact me!
o Office Hours: By appointment via Zoom — send me an email to schedule a time

Course Information

o PSY 5939: Longitudinal Data Analysis
e Thursday, 9:30am - 10:45am
e Zoom (link in Canvas or here)

This course covers topics related to statistical analysis of longitudinal data, focusing on
methods used in the social sciences and health research. Topics include analysis of covariance
(ANCOVA), difference scores, statistical mediation, mixed models (with correlated residuals
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and/or with random effects), and latent growth modeling. You will be able to analyze,
interpret, and write up results using these methods.

This course takes place using the Online LIVE modality. We will meet synchronously
via Zoom for 1 hour 15 minutes each week; you will be responsible for completing course
assignments such as readings, videos, and quizzes to be prepared to participate in the live
meeting.

Prerequisites

Graduate coursework in analysis of variance and linear regression, such as PSY 5939: Quant
1 and PSY 5939: Quant 2. We will cover a variety of topics in this course, but all of them
build on a basic ANOVA and regression (general linear model) framework. A course covering
multivariate statistics (such as PSY 5246C) is also required.

Learning objectives

« Explain how longitudinal data, research questions, and statistical models differ from
cross-sectional data, research questions, and statistical models

o Develop longitudinal research questions
o Choose the appropriate analysis approach for the longitudinal research question

o Analyze longitudinal data with statistical methods and software appropriate to the
research question

o Create a written report of your findings
« Draw conclusions about your research question(s) based on those results

» Create a presentation to verbally report your findings and conclusions

Software and Technology
All course materials will be posted on Canvas. All assignments will be submitted via Canvas.
We will use Zoom for synchronous course meetings.

We will use SPSS and R for the first part of the course. I expect you to be able to use at
least one of these software packages to do things like open datasets, transform variables,
conduct simple analyses, etc. I will provide information about the specific procedures you
will need to know for this course, including key data re-structuring techniques.

We will use Mplus for latent growth models. I do not expect you to know anything about
Mplus; I will provide information on what you need to know about Mplus for this course.
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Course Structure

This course takes place using the Online LIVE modality. We will meet synchronously
via Zoom for 1 hour 15 minutes each week; you will be responsible for completing course
assignments such as readings, videos, and quizzes to be prepared to participate in the live
meeting.

Each week will follow a similar structure:
o Monday: Lecture and related materials posted by end of the day
o Wednesday: Watch lecture and complete embedded quiz by 8pm
o Thursday: Synchronous meeting via Zoom to review material and work on applications

o Sunday: Assignment (homework or article discussion) due by 8pm

Assignments
Your work in this course will be assessed using a variety of methods.
« Lecture quizzes (10%)

Quiz questions will be embedded within the lecture video. These questions will assess whether
you understand some key points in the lecture.

« Homework (40%)

Four homework assignments covering: (1) models for 2 waves, (2) mixed models, (3) latent
growth models, and (4) statistical mediation. The assignments involve running several
analyses, making some decisions based on the analyses, interpreting output, and presenting
the results in tables/figures and text.

« Article discussions (15%)

We will use Perusall to conduct group article discussions. I will provide prompts / direction;
you will annotate the article with questions and comments. These are designed to give you
some experience reading and understanding quantitative methods articles and to get you to
think about the topics in more detail. You will also write up a short (~150 word) reflection
on the article.

o Final project

You will propose and conduct a project using your own dataset or a publicly available dataset,
culminating in a short paper. I want you to focus on developing longitudinal research
questions and mapping them on to appropriate longitudinal analyses.

« Proposal (5%)

You will turn in a 1 to 2 page proposal for your project. The purpose of the proposal is to get
you to select a dataset, start to solidify your ideas, and get feedback and additional
resources from me. You can change the direction of the project later in the semester as you
learn more.
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« Presentation (10%)

A short presentation about your final project. I expect that your analyses should be complete
(or nearly so) at this point; preparing the presentation should help you organize your thoughts.
The main purpose of this presentation is to give you practice presenting your analysis
findings in a group setting. Approximately 15 to 20 minutes per person, including
questions.

« Presentation discussion (5%)

Each student should ask a question of at least 2 other students about their presentations. The
original student should attempt to answer the questions. (Feel free to have further discussion
as welll)

« Paper (15%)
The final written record of your project. This should be in the style of a journal article, with

Introduction, Methods, Results, and Discussion sections.

Tentative Schedule

Date Topic Assignment
Jan 10  Introduction Article 1
Jan 17 Two waves Article 2

Jan 24 Mixed models (G) Homework 1
Jan 31  Mixed models (G) Article 3
Feb 07  Mixed models (G) Article 4

Feb 14  Mplus Homework 2
Feb 21  Latent growth models Article 5
Feb 28 SPRING BREAK No assignment

Mar 07 Latent growth models Proposal
Mar 14 Latent growth models Article 6

Mar 21 Mediation Homework 3
Mar 28 Mediation Article 7
Apr 04 Growth mixture Homework 4
Apr 11 Mixed models (R) Article 8
Apr 18 Office hours Presentation
Apr 25 FINALS WEEK Final paper

Due dates subject to change due to hurricane, emergency, scheduling changes, etc.
Quizzes are due by Wednesday at 8pm.

Assignments are due by the end of Sunday (midnight).

Presentation due by end of the day on Sunday, April 24, 2022.

Presentation discussion due by end of day on Wednesday, April 27, 2022.
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Final project due by the end of the day on Friday, April 29, 2022.

Grades

Grade Percentage

A >=93

A- 90 - 92.99
B+ 87 - 89.99
B 83 - 86.99
B- 80 - 82.99
C+ 77 - 79.99
C 70 - 76.99
F <= 69.99

Course and University Policies

Online Course Policies

https://online.fiu.edu/html/canvas/policies/

Academic Misconduct

Students at Florida International University are expected to adhere to the highest standards
of integrity in every aspect of their lives. Honesty in academic matters is part of this
obligation. Academic integrity is the adherence to those special values regarding life and work
in an academic community. Any act or omission by a student which violates this concept
of academic integrity shall be defined as academic misconduct and shall be subject to the
procedures and penalties set forth herein. All students are expected to adhere to a standard
of academic conduct, which demonstrates respect for themselves, their fellow students, and
the educational mission of the University. All students are deemed by the University to
understand that if they are found responsible for academic misconduct, they will be subject
to the Academic Misconduct procedures and sanctions, as outlined in the Student Handbook.

https://dasa.fiu.edu/all-departments/student-conduct-and-academic-integrity /

Academic Dishonesty

Please refer to your student handbook for a description of what constitutes academic dishon-
esty. I expect all students to complete and turn in their own work.

Accessibility / Accomodation

Any student with a disability or other need that may require special accommodations for
this course should make this known to the instructor during the first week of class. You can
contact the Disability Resource Center at
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e Graham Center 190

Attendance

Attendance is not explicitly part of your grade in this course, but activities completed during
the synchronous portion of the course will be extremely helpful.

If you need to miss class (such as for illness, religious event, professional activity, or university-
sanctioned event), please contact me as soon as possible to make any necessary arrangements.
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