
PSY 5246C: Fall 2022 Syllabus
Multivariate Analysis in

Applied Psychological Research

Instructor Information

• Instructor: Dr. Stefany Coxe

– Ph.D., Quantitative Psychology from Arizona State University
– I evaluate and apply advanced statistical methods in behavioral research, especially

regression models for categorical outcomes and statistical graphics
– Email (stefany.coxe@fiu.edu) is always the best way to contact me! If you don’t

hear back from me in a couple days, send me another email
– Office Hours are by appointment via Zoom (link also on Canvas)

• Teaching Assistant: Morgan Jusko

– Email: mjusko@fiu.edu
– Office Hours are Wednesday 1 to 2pm via Zoom (link also on Canvas)

Course Information

Format and Meetings

This is a hybrid course. We will meet in person each Wednesday from 10:30am
to 11:45am in PC 419; you will be responsible for completing course assignments such as
videos and readings prior to class in order to be prepared to participate in the in-person
meeting. See Assessments and Schedule below.
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Learning Goals

This course covers topics related to multivariate statistical analysis, focusing on methods
used in the social sciences and health research. You will learn about matrix algebra, linear re-
gression, logistic regression, Poisson regression, factor analysis, principal components analysis,
mixed models, and mediation. You will be able to analyze, interpret, and write up results
using these methods. This course will provide you with the background and confidence for
further study in applied statistics.

Learning Objectives

• Compare and contrast possible analysis options based on the research question
• Select the appropriate analysis approach for the research question
• Analyze data with statistical methods appropriate to the research question
• Create a written report of your findings
• Make conclusions about your research question(s) based on those results
• Discover a love of statistics!

Prerequisites

Graduate coursework in analysis of variance and linear regression, such as PSY 5939: Quant 1
and PSY 5939: Quant 2. We will cover a variety of topics in this course, but all of them build
on a general linear model (ANOVA and regression) framework.

Software and Technology

• Canvas

Course materials will be posted on Canvas. Lecture videos will be posted on Playposit, with
links in Canvas. You will submit all assignments via Canvas.

• Statistical software

We will use SPSS and R for this course. I expect you to be able to use at least one
of these software packages to do things like open datasets, transform variables, conduct
simple analyses, etc. I will provide information about the specific procedures you will need to
know for this course.

We will briefly use Mplus later in the course. I do not expect you to know anything about
Mplus; I will provide input and output files for you for this portion of the course.
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Course Structure

This course takes place in a hybrid format. We will meet in person for 1 hour 15
minutes each week. You will be responsible for completing course assignments such as videos
and readings prior to class in order to be prepared to participate in the in-person meeting.
You will also have assignments to complete outside of class.

Each week will follow a similar structure:

• Monday: Lecture videos posted early in the day

• Tuesday: Watch lecture and complete embedded questions by 8pm

• Wednesday: In-person meeting to review material and work on applications

• Thursday: Reflection due by 8pm

• Sunday: Homework assignment due by 8pm

Assessments

Your work in this course will be assessed using a variety of methods.

• Lecture Questions (10%)

Questions will be embedded within the lecture video. These questions will assess whether you
understand some key points in the lecture. You will have unlimited attempts to answer each
question.

• Homework (50%)

There will be twelve (12) homework assignments covering each of the topics we will cover. The
assignments involve running analyses in SPSS and/or R, making some decisions based on the
analyses, interpreting output, and presenting the results.

• Reflection (10%)

There will be twelve (12) short reflections about the week’s work, including responses to in-class
questions, connections between the material and your own research, and similar.

• End-of-module Quizzes (30%)

There will be three (3) in-class quizzes, one at the end of each module. See the Tentative
Schedule for dates. I will give you output or other information and you will need to interpret
or annotate the results or otherwise comment on the material. You may have to do some
mathematical calculations, but they will be minimal. You will NOT need to run analyses in
SPSS or R. These quizzes are open book and open notes, but you must work alone
and complete each quiz within 1 hour.
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Tentative Schedule

Week Topic L Q R H
Aug 22 Intro, matrix algebra 1 1 1
Aug 29 Linear regression 2 2 2
Sep 5 Linear regression 3 3 3
Sep 12 Logistic regression 4 4 4
Sep 19 Poisson regression 5 5 5
Sep 26 1
Oct 3 Matrix algebra 6 6 6
Oct 10 Principal components analysis 7 7 7
Oct 17 Factor analysis 8 8 8
Oct 24 Latent class analysis 9 9 9
Oct 31 2
Nov 7 MANOVA / RM ANOVA 10 10 10
Nov 14 Mixed models 11 11 11
Nov 21 HOLIDAY
Nov 28 Mediation 12 12 12
Dec 5 3

Due dates subject to change due to hurricane, emergency, scheduling changes, etc.

L: Watch lecture videos by Tuesday at 8pm.

Q: Quizzes take place in class on Wednesday morning.

R: Reflections are due by Thursday at 8pm.

H: Homework assignments are due by the end of Sunday (midnight).

Grades

Grade Percentage
A >=93
A- 90 - 92.99
B+ 87 - 89.99
B 83 - 86.99
B- 80 - 82.99
C+ 77 - 79.99
C 70 - 76.99
F <= 69.99
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Course and University Policies

Academic Misconduct

Students at Florida International University are expected to adhere to the highest standards of
integrity in every aspect of their lives. Honesty in academic matters is part of this obligation.
Academic integrity is the adherence to those special values regarding life and work in an
academic community. Any act or omission by a student which violates this concept of academic
integrity shall be defined as academic misconduct and shall be subject to the procedures and
penalties set forth herein. All students are expected to adhere to a standard of academic
conduct, which demonstrates respect for themselves, their fellow students, and the educational
mission of the University. All students are deemed by the University to understand that if
they are found responsible for academic misconduct, they will be subject to the Academic
Misconduct procedures and sanctions, as outlined in the Student Handbook.

https://dasa.fiu.edu/all-departments/student-conduct-and-academic-integrity/

Academic Dishonesty

Please refer to your student handbook for a description of what constitutes academic dishon-
esty. While you may work with other students on your homework assignments, I expect all
students to complete and turn in their own work.

Accessibility / Accomodation

Any student with a disability or other need that may require special accommodations for this
course should make this known to the instructor during the first week of class. You can contact
the Disability Resource Center at

• http://drc.fiu.edu
• drcupgl@fiu.edu
• 305-348-3532
• Graham Center 190

Attendance

Attendance is not explicitly part of your grade in this course, but activities completed during
the in-person portion of the course will be extremely helpful.

If you need to miss class (such as for illness, religious event, professional activity, or university-
sanctioned event), please contact me as soon as possible to make any necessary arrangements,
particularly if you will miss a Quiz day.
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